

Model-based Controls and Systems Engineering for Building and Aircraft Systems

Stevo Mijanovic, PhD General Manager United Technologies Research Centre Ireland

> Lund University 30 September 2016

- UTC, UTRC, and UTRC Ireland
- UTRC Ireland Building Energy Research & selected projects
 - COOPERATE (EU co-funded FP7)
 - ELSA (EU co-funded H2020)
 - Energy in Time (EU co-funded FP7)
- UTRC Ireland Aerospace Research & selected project
 - MISSION (EU co-funded CS2)

United Technologies

Business units

Pratt & Whitney

UTC Climate, Controls & Security

UTC Aerospace Systems

UTRC IRELAND

Est. 2010 in Cork

Limerick

Cork

Objectives...

Hub for European interactions Leverage existing investments in ICT Dublin Testbed for energy and security technologies Support aerospace BUs

and in

Technical capabilities and Groups

Power Electronics & System Modeling

Controls & Decision Support

Networks & Embedded Systems

2020

Leveraging national and EU network of innovation

Connect – Communication Networks Research Centre

Highly skilled and diverse workforce

UTRC IRELAND TECHNICAL CAPABILITIES

Controls & Decision support

- Thermal system modeling
- Model-based control design
- Model-predictive control
- Optimization-based control
- Fault detection and impact analysis
- Data analytics for alarm management
- Data- and physics-based diagnostics
- Video analytics

Power Electronics

- Hierarchical system modeling and controls
- Model-based power converter design
- Electric motor optimization
- Digital control of converters & drives
- Power quality analysis
- Grid estimation & emulation
- HiL / rapid prototyping

Renew

Carrie

- Sensor networks
- Communications protocols
- Model-based design
- Formal methods
- Embedded systems
- Software engineering
- Constraint programming

UTRC IRELAND ENERGY RESEARCH

Innovative solutions for system integration, monitoring and operation

Developing key technology enablers for the **new generation** of **energy** services and products

This page contains no technical data and is not subject to the EAR or the ITAR.

FP7 COOPERATE

Control and optimization of energy positive neighbourhoods

Project Objectives

- Develop an open, scalable neighborhood energy management platform
- Services-oriented architecture for developing neighborhood energy services
- District-level energy optimization and decision support algorithms

COOPERATE neighbourhood services and management platform

Key challenges:

- Distributed heterogeneous multi-energy systems and loads
- Integration of heterogeneous thermal and electrical systems
- Integration of loads, embedded generation and storage
- Requires a System-Of-Systems (SoS) approach

FP7 COOPERATE

Hierarchical approach to neighbourhood energy optimization developed

Hierarchical Optimization Approach Integrated NEM Platform rso Neighborhood Energy MIN Aggregator **Optimization Engine** Weather Forecast Energy Prices Selected set of Selected set of Building Building Building Schedules Schedules Schedules Schedules Schedules Information Information Information Selected set of Schedules Neighbourhood Reward AUTOMATEDLOGIC' AUTOMATEDLOGIC AUTOMATEDLOGIC Neighbourhood Neighbourhood Batterv Reward Reward EMS EMS EMS 1 Boiler **Power Generation** Power Generation Power Generation Building Building Building & Equipments & Equipments & Equipments Measurements **Building-level** Measurements Measurements Set-Points Set-Points Set-Points Enerav Management Actor-Level **Systems** (Buildings, Heating & Electrical systems) Building ' Building 2 Building 3

Objective:

- Reduce neighbourhood cost/emissions
- Multi-site supply, demand and storage optimization
- ✓ Coordinate generation and demand from different buildings

Challenges:

- Balance building and neighbourhood objectives (cost, emissions)
- Limited data available or disclosed in multi-owner districts
- Variable or real-time energy prices

Exploit flexibility at building equipment and loads to reduce overall neighbourhood cost and maximize RES and storage use

BISHOPSTOWN CAMPUS DEMO

In-field demonstration completed (February 15th-17th, 2015)

CIT Campus Demosite

- Coordinate electrical, thermal storage and local generation to minimize total energy cost (electricity + natural gas)
- 11% total energy consumption reduction by using battery and CHP flexibility
- Optimal battery operation: charge at low tariff and discharge at high tariff
- Additional savings from local CHP generation (exploit low gas vs grid tariffs)

H2020 ELSA

Energy Local Storage Advanced system

- Bring electricity storage system based on electric vehicle used batteries (2nd life batteries) and Building Energy Management System (BEMS) to an industrial level
- Pilot technology at 6 demo sites (France, UK, Spain, Italy and Germany)

Buildings directly supporting the grid: active role

Buildings communicating flexibility

openADR allows for automated demand response services

BEMS coordinates building operations guaranteeing comfort

H2020 ELSA

Energy Local Storage Advanced system

SASMI building at Gateshead College (UK)

(Real electrical building consumption available, PV generation simulated using Dymola)

Use case 1: demand response 1h flexibility

Battery, PV, 10% HVAC Reduction & Door Curtain

If grid requires, BEMS can coordinate batteries, PV and HVAC and can reduce the power consumption up to 49% for 1h event

Use case 2: peak minimization

BEMS can coordinate loads, batteries and PV to reduce the peak consumption up to 16%

H2020 ELSA

Energy Local Storage Advanced system

SASMI building (UK)

Storage system capacity

1st life batteries : 72 kWh 2nd life batteries: 48 kWh

ENERGY IN TIME

AUTOMATED FAULT DETECTION AND DIAGNOSTICS

UTRC IRELAND – AEROSPACE PROGRAMS

Developing methods and tools for integration of complex aerospace systems

