On one generic choice of transverse coordinates for a trajectory of a controlled mechanical system subject to non-holonomic constraints

Anton Shiriaev ${ }^{\dagger}$,» Leonid Freidovich*
*Department of Applied Physics and Electronics Umeå University, Sweden
\dagger Department of Engineering Cybernetics Norwegian University of Science and Technology
Trondheim, Norway

On one generic choice of transverse coordinates for a trajectory of a controlled mechanical system subject to non-holonomic constraints

- Motivation and Preliminaries
- Representation of a Motion for a Mechanical System
- Good Coordinates around a Target Motion
- Example

Motivating Example: a Unicycle

The equations of motion are

$$
m \ddot{x}=F_{x}^{c}, \quad m \ddot{y}=F_{y}^{c}, \quad J \ddot{\theta}=u
$$

Here $\boldsymbol{F}_{\boldsymbol{x}}^{\boldsymbol{c}}, \boldsymbol{F}_{y}^{c}$ are components of constraint force; \boldsymbol{u} is control

Motivating Example: a Unicycle

The equations of motion are

$$
m \ddot{x}=\lambda \cdot \cos \left(\theta-\frac{\pi}{2}\right), \quad m \ddot{y}=\lambda \cdot \sin \left(\theta-\frac{\pi}{2}\right), \quad J \ddot{\theta}=u
$$

Here $\boldsymbol{\lambda}$ is amplitude of the constraint force.

Motivating Example: a Unicycle

The equations of motion are

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

Motivating Example: a Unicycle

The equations of motion are

$$
\frac{d}{d t}\left[\frac{\partial}{\partial \dot{q}} \mathcal{L}\right]-\frac{\partial}{\partial q} \mathcal{L}=R(q, \dot{q})+B(q) u, \quad R_{i}=\dot{q}^{T} r_{i}(q) \dot{q}
$$

Here $q \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $R(\cdot)$ is a vector of reaction forces.

Motivating Example: a Unicycle

Problems:

- Given a motion, design controller for its orbital stabilization
- Given a motion and controller, analyze the dynamics
- Given specifications, plan a feasible motion

Motivating Example: Elements of Theory of G.W. Hill
Equations of motion for the position of the Moon in rotat-
 ing coordinate frame are

$$
\left\{\begin{array}{l}
\ddot{x}-2 m \dot{y}=\frac{\partial}{\partial x} F \\
\ddot{y}+2 m \dot{x}=\frac{\partial}{\partial y} F
\end{array}\right.
$$

Here

$$
\boldsymbol{F}=\frac{\kappa}{\sqrt{x^{2}+y^{2}}}+\frac{3}{2} m^{2} x^{2}
$$

m, κ are positive constants.

Motivating Example: Elements of Theory of G.W. Hill
Equations of motion for the position of the Moon in rotat-
 ing coordinate frame are

$$
\left\{\begin{array}{l}
\ddot{x}-2 m \dot{y}=\frac{\partial}{\partial x} F \\
\ddot{y}+2 m \dot{x}=\frac{\partial}{\partial y} F
\end{array}\right.
$$

Here

$$
\boldsymbol{F}=\frac{\kappa}{\sqrt{x^{2}+y^{2}}}+\frac{3}{2} m^{2} x^{2}
$$

m, κ are positive constants.
The system has the invariant: $I=\dot{x}^{2}+\dot{y}^{2}-2 F(x, y)+C$

Motivating Example: Elements of Theory of G.W. Hill
Equations of motion for the position of the Moon in rotat-
 ing coordinate frame are

$$
\left\{\begin{array}{l}
\ddot{x}-2 m \dot{y}=\frac{\partial}{\partial x} F \\
\ddot{y}+2 m \dot{x}=\frac{\partial}{\partial y} F
\end{array}\right.
$$

Here

$$
\boldsymbol{F}=\frac{\kappa}{\sqrt{x^{2}+y^{2}}}+\frac{3}{2} m^{2} x^{2}
$$

m, κ are positive constants.
The system has the invariant: $I=\dot{x}^{2}+\dot{y}^{2}-2 F(x, y)+C$
Task: Analyze the dynamics in a vicinity of periodic circle motion

Motivating Example: Elements of Theory of G.W. Hill

Denote $\left[x_{p}(t), y_{p}(t)\right]$ the periodic solution

Motivating Example: Elements of Theory of G.W. Hill

Denote $\left[x_{p}(t), y_{p}(t)\right]$ the periodic solution
Perturbed solutions $\left[x_{p}(t)+\delta x(t), y_{p}(t)+\delta y(t)\right]$ defined by

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}[\delta x]-2 m \frac{d}{d t}[\delta y]= \\
& =\left[\frac{\partial^{2}}{\partial x^{2}} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta x+\left[\frac{\partial^{2}}{\partial x \partial y} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta y \\
& \begin{aligned}
\frac{d^{2}}{d t^{2}}[\delta y]+ & 2 m \frac{d}{d t}[\delta x]= \\
= & {\left[\frac{\partial^{2}}{\partial x \partial y} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta x+\left[\frac{\partial^{2}}{\partial y^{2}} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta y }
\end{aligned}
\end{aligned}
$$

Motivating Example: Elements of Theory of G.W. Hill

Denote $\left[x_{p}(t), y_{p}(t)\right]$ the periodic solution
Perturbed solutions $\left[x_{p}(t)+\delta x(t), y_{p}(t)+\delta y(t)\right]$ defined by

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}[\delta x]-2 m \frac{d}{d t}[\delta y]= \\
& =\left[\frac{\partial^{2}}{\partial x^{2}} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta x+\left[\frac{\partial^{2}}{\partial x \partial y} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta y \\
& \frac{d^{2}}{d t^{2}}[\delta y]+2 m \frac{d}{d t}[\delta x]= \\
& =\left[\frac{\partial^{2}}{\partial x \partial y} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta x+\left[\frac{\partial^{2}}{\partial y^{2}} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta y
\end{aligned}
$$

The integral Jacobi $I(\cdot)$ gives another relation

$$
\begin{aligned}
& \frac{d}{d t} x_{p}(t) \frac{d}{d t}[\delta x]+\frac{d}{d t} y_{p}(t) \frac{d}{d t}[\delta y]= \\
& \quad=\left[\frac{\partial}{\partial x} F\left(x_{p}(t), y_{p}(t)\right)\right] \delta x+\left[\frac{\partial}{\partial y} \boldsymbol{F}\left(x_{p}(t), y_{p}(t)\right)\right] \delta y
\end{aligned}
$$

Motivating Example: Elements of Theory of G.W. Hill

Transform of coordinates into normal (δN) and tangent (δT)

$$
\left[\begin{array}{l}
\delta x \\
\delta y
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
\delta T \\
\delta N
\end{array}\right]
$$

Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates

$$
[x, y, \dot{x}, \dot{y}]
$$

are changed into

$$
[\phi, I, N, \dot{N}]
$$

Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates

$$
[x, y, \dot{x}, \dot{y}]
$$

are changed into

$$
[\phi, I, N, \dot{N}]
$$

The linearization of $\phi(\cdot)$ is not important: it perpetually rotates

Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates

$$
[x, y, \dot{x}, \dot{y}]
$$

are changed into

$$
[\phi, I, N, \dot{N}]
$$

The linearization of $\phi(\cdot)$ is not important: it perpetually rotates
The linearization of $I(\cdot)$ is straightforward: $\frac{d}{d t}[\delta I] \equiv 0$

Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates

$$
[x, y, \dot{x}, \dot{y}]
$$

are changed into

$$
[\phi, I, N, \dot{N}]
$$

The linearization of $\phi(\cdot)$ is not important: it perpetually rotates
The linearization of $I(\cdot)$ is straightforward: $\frac{d}{d t}[\delta I] \equiv 0$
The linearization of $[\boldsymbol{N}, \dot{N}]$ is the famous Hill's equation

$$
\frac{d^{2}}{d t^{2}}[\delta N]+\Phi(t) \delta N=0
$$

Motivating Example: Observations

Analysis of dynamics in a vicinity of the motion's orbit requires:

- Decomposition of coordinates into
- transverse to the trajectory $(\operatorname{dim}=2 n-1)$
- along the trajectory ($\operatorname{dim}=1$)

In the example they are

$$
[I, N, \dot{N}] \quad \text { and } \quad \phi
$$

Motivating Example: Observations

Analysis of dynamics in a vicinity of the motion's orbit requires:

- Decomposition of coordinates into
- transverse to the trajectory ($\operatorname{dim}=2 n-1$)
- along the trajectory ($\operatorname{dim}=1$)

In the example they are

$$
[I, N, \dot{N}] \quad \text { and } \quad \phi
$$

- Presence of invariants allows to reduce a number of transverse coordinates with non-trivial dynamics.
In the example the integral Jacobi $I(\cdot)$ is excluded.

Geometrical Interpretation

Given a trajectory of a nominal motion

Geometrical Interpretation

We would like to analyze properties of the dynamics in its tubing vicinity

Geometrical Interpretation

Introduce a family of dis-joint transverse surfaces that are continuously slicing this vicinity

Geometrical Interpretation

For the linearization of the dynamics the surfaces are substituted by tangent planes

Geometrical Interpretation

If the dynamics have some invariants, then they define a manifold

Geometrical Interpretation

For the linearization we consider the linear subspaces that are tangent to to the trajectory along this manifold

Geometrical Interpretation

Evolution of coordinates on these linear subspaces will define linearization of transverse coordinates with nontrivial behavior

Outline

- Motivation and Preliminaries
- Representation of a Motion for a Mechanical System
- Good Coordinates around a Target Motion
- Example

Representation for a Nominal Motion:

Given a model of mechanical system

$$
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q)=R(q, \dot{q})+B(q) u
$$

where

- $q=\left[q_{1}, q_{2}, \ldots, q_{n}\right]^{T}$ is a vector of degrees of freedom
- $u=\left[u_{1}, \ldots, u_{m}\right]^{T}$ is a vector of control forces
- $\boldsymbol{R}(\cdot)$ is a vector

$$
R(\cdot)=\left[R_{1}(\cdot), \ldots, R_{n}(\cdot)\right]^{T}
$$

of reaction forces with

$$
R_{i}(q, \dot{q})=\dot{q}^{T} r_{i}(q) \dot{q}, \quad i=1, \ldots, n
$$

Representation for a Nominal Motion (Cont'd):

Given a motion
$q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}$
of the system defined for the time interval $t \in[0, T]$

Representation for a Nominal Motion (Cont'd):

Given a motion

$$
\begin{aligned}
& q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T} \\
& \text { of the system defined for the } \\
& \text { time interval } t \in[0, T]
\end{aligned}
$$

Then one can always find a way to re-parameterize the motion

- In the phase space the motion is the path

Representation for a Nominal Motion (Cont'd):

Given a motion

$$
\begin{aligned}
& q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T} \\
& \text { of the system defined for the } \\
& \text { time interval } t \in[0, T]
\end{aligned}
$$

Then one can always find a way to re-parameterize the motion

- In the phase space the motion is the path
- Denote by $\theta^{\star}(t)$ the arc-length along the path $\Rightarrow t=t\left(\theta^{\star}\right)$

Representation for a Nominal Motion (Cont'd):

Given a motion

$$
\begin{aligned}
& q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T} \\
& \text { of the system defined for the } \\
& \text { time interval } t \in[0, T]
\end{aligned}
$$

Then one can always find a way to re-parameterize the motion

- In the phase space the motion is the path
- Denote by $\theta^{\star}(t)$ the arc-length along the path $\Rightarrow t=t\left(\theta^{\star}\right)$
- The motion is parameterized by this new variable θ^{\star}

$$
q_{1}^{\star}=q_{1}^{\star}\left(t\left(\theta^{\star}\right)\right)=\phi_{1}\left(\theta^{\star}\right), \quad \ldots, \quad q_{n}^{\star}=q_{n}^{\star}\left(t\left(\theta^{\star}\right)\right)=\phi_{n}\left(\theta^{\star}\right)
$$

Representation for a Target Motion (Cont'd):

Given a motion

$$
q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}
$$

There are n-functions

$$
\phi_{1}(\cdot), \phi_{2}(\cdot), \ldots, \phi_{n}(\cdot)
$$

Representation for a Target Motion (Cont'd):

Given a motion

$$
q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}
$$

There are n-functions

$$
\phi_{1}(\cdot), \phi_{2}(\cdot), \ldots, \phi_{n}(\cdot)
$$

The orbit of the motion lives on 2-dimensional manifold $[\theta, \dot{\theta}]$ defined by the relations

$$
q_{1}=\phi_{1}(\theta), q_{2}=\phi_{2}(\theta), \ldots, q_{n}=\phi_{n}(\theta)
$$

Representation for a Target Motion (Cont'd):

Given a motion

$$
q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}
$$

There are n-functions

$$
\phi_{1}(\cdot), \phi_{2}(\cdot), \ldots, \phi_{n}(\cdot)
$$

The orbit of the motion lives on 2-dimensional manifold $[\theta, \dot{\theta}]$ defined by the relations

$$
q_{1}=\phi_{1}(\theta), q_{2}=\phi_{2}(\theta), \ldots, q_{n}=\phi_{n}(\theta)
$$

How do the dynamics of θ look like on that manifold?

Reduced Dynamics: Given an Euler-Lagrange system

$$
\frac{d}{d t}\left[\frac{\partial \mathcal{L}}{\partial \dot{q}}\right]-\frac{\partial \mathcal{L}}{\partial q}=R(q, \dot{q})+B(q) u
$$

where the components of force $R(\cdot)$ are quadratic in $\dot{\boldsymbol{q}}$ and

$$
\operatorname{dim} q-\operatorname{dim} u=1
$$

Reduced Dynamics: Given an Euler-Lagrange system

$$
\frac{d}{d t}\left[\frac{\partial \mathcal{L}}{\partial \dot{q}}\right]-\frac{\partial \mathcal{L}}{\partial q}=R(q, \dot{q})+B(q) u
$$

where the components of force $R(\cdot)$ are quadratic in $\dot{\boldsymbol{q}}$ and

$$
\operatorname{dim} q-\operatorname{dim} u=1
$$

consider the following geometrical relations

$$
q_{1}=\phi_{1}(\theta), \quad q_{2}=\phi_{2}(\theta), \quad \ldots, \quad q_{n}=\phi_{n}(\theta)
$$

relating the coordinates q_{i} and the new independent variable θ.

Reduced Dynamics: Given an Euler-Lagrange system

$$
\frac{d}{d t}\left[\frac{\partial \mathcal{L}}{\partial \dot{q}}\right]-\frac{\partial \mathcal{L}}{\partial q}=R(q, \dot{q})+B(q) u
$$

where the components of force $R(\cdot)$ are quadratic in \dot{q} and

$$
\operatorname{dim} q-\operatorname{dim} u=1
$$

consider the following geometrical relations

$$
q_{1}=\phi_{1}(\theta), \quad q_{2}=\phi_{2}(\theta), \quad \ldots, \quad q_{n}=\phi_{n}(\theta)
$$

relating the coordinates q_{i} and the new independent variable θ.
If there exists $u^{*}(\cdot)$ for the E-L system that makes these relations invariant along solutions of the closed loop system

Reduced Dynamics: Given an Euler-Lagrange system

$$
\frac{d}{d t}\left[\frac{\partial \mathcal{L}}{\partial \dot{q}}\right]-\frac{\partial \mathcal{L}}{\partial q}=R(q, \dot{q})+B(q) u
$$

where the components of force $R(\cdot)$ are quadratic in \dot{q} and

$$
\operatorname{dim} q-\operatorname{dim} u=1
$$

consider the following geometrical relations

$$
q_{1}=\phi_{1}(\theta), \quad q_{2}=\phi_{2}(\theta), \quad \ldots, \quad q_{n}=\phi_{n}(\theta)
$$

relating the coordinates q_{i} and the new independent variable θ.
If there exists $u^{*}(\cdot)$ for the E-L system that makes these relations invariant along solutions of the closed loop system

Then θ is a solution of the system

$$
\alpha(\theta) \ddot{\theta}+\beta(\theta) \dot{\theta}^{2}+\gamma(\theta)=0
$$

where $\alpha(\cdot), \beta(\cdot)$ and $\gamma(\cdot)$ are scalar function.

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{lll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

If the dynamics are
$M(q)\left[\begin{array}{c}\ddot{q}_{1} \\ \ddot{q}_{2} \\ \vdots \\ \ddot{q}_{n}\end{array}\right]+C(q, \dot{q})\left[\begin{array}{c}\dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n}\end{array}\right]+\left[\begin{array}{c}g_{1}(q) \\ g_{2}(q) \\ \vdots \\ g_{n}(q)\end{array}\right]=\left[\begin{array}{c}\dot{q}^{T} r_{1}(q) \dot{q} \\ \dot{q}^{T} r_{2}(q) \dot{q} \\ \vdots \\ \dot{q}^{T} r_{n}(q) \dot{q}\end{array}\right]+\left[\begin{array}{c}0 \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{lll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, & \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

If the dynamics are
$M(q)\left[\begin{array}{c}\ddot{q}_{1} \\ \ddot{q}_{2} \\ \vdots \\ \ddot{q}_{n}\end{array}\right]+C(q, \dot{q})\left[\begin{array}{c}\dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n}\end{array}\right]+\left[\begin{array}{c}g_{1}(q) \\ g_{2}(q) \\ \vdots \\ g_{n}(q)\end{array}\right]=\left[\begin{array}{c}\dot{q}^{T} r_{1}(q) \dot{q} \\ \dot{q}^{T} r_{2}(q) \dot{q} \\ \vdots \\ \dot{q}^{T} r_{n}(q) \dot{q}\end{array}\right]+\left[\begin{array}{c}0 \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$
Then one picks up the first equation (independent on control)

$$
\begin{aligned}
& m_{11}(q) \ddot{q}_{1}+\cdots+m_{1 n}(q) \ddot{q}_{n}+ \\
& \quad+c_{11}(q, \dot{q}) \dot{q}_{1}+\cdots+c_{1 n}(q, \dot{q}) \dot{q}_{n}+g_{1}(q)=\dot{q}^{T} r_{1}(q) \dot{q}+0
\end{aligned}
$$

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

Then ohe picks μ p the fisst equation(independen on control) $m_{11}(\underset{q}{q}) \ddot{q}_{1}+\cdots+m_{1 n}(\underset{q}{q}) \ddot{q}_{n}+$

$$
+c_{11}(\stackrel{\downarrow}{q}, \dot{q}) \dot{q}_{1}+\cdots+c_{1 n}(\stackrel{\downarrow}{q}, \dot{q}) \dot{q}_{n}+g_{1}(\stackrel{\downarrow}{q})=\dot{q}^{T} r_{1}(\stackrel{l}{q}) \dot{q}
$$

and substitute the relations

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

and substitute the relations

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{aligned}
& \dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, \quad \ldots, \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
& \ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta} \\
& \text { If the dynamics are }
\end{aligned}
$$

Then one picks up the first equation (independent on control) $m_{11}(q) \ddot{q}_{1}+\cdots+m_{1 n}(q) \ddot{q}_{n}+$

$$
+c_{11}(q, \dot{q}) \dot{q}_{1}+\cdots+c_{1 n}(q, \dot{q}) \dot{q}_{n}+g_{1}(q)=\dot{q}^{T} r_{1}(q) \dot{q}
$$

and substitute the relations

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

The matrix-function $C(q, \dot{q})$ of the E-L system

$$
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q)=R(q, \dot{q})+B(q) u^{*}
$$

is linear in $\dot{\boldsymbol{q}}$.

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

The matrix-function $C(q, \dot{q})$ of the E-L system

$$
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q)=R(q, \dot{q})+B(q) u^{*}
$$

is linear in $\dot{\boldsymbol{q}}$.
Substituting expressions for q, \dot{q}, and \ddot{q} into the system dynamics, we obtain the system of n second order equations

$$
M(\Phi)\left[\Phi^{\prime} \ddot{\theta}+\Phi^{\prime \prime} \dot{\theta}^{2}\right]+C\left(\Phi, \Phi^{\prime} \dot{\theta}\right) \Phi^{\prime} \dot{\theta}+G(\Phi)=R\left(\Phi, \Phi^{\prime} \dot{\theta}\right)+B(\Phi) u^{*}
$$

Proof's Sketch: Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

The matrix-function $C(q, \dot{q})$ of the E-L system

$$
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q)=R(q, \dot{q})+B(q) u^{*}
$$

is linear in $\dot{\boldsymbol{q}}$.
Substituting expressions for \boldsymbol{q}, \dot{q}, and \ddot{q} into the system dynamics, we obtain the system of n second order equations

$$
M(\Phi)\left[\Phi^{\prime} \ddot{\theta}+\Phi^{\prime \prime} \dot{\theta}^{2}\right]+C\left(\Phi, \Phi^{\prime} \dot{\theta}\right) \Phi^{\prime} \dot{\theta}+G(\Phi)=R\left(\Phi, \Phi^{\prime} \dot{\theta}\right)+B(\Phi) u^{*}
$$

where $\Phi(\theta), \Phi^{\prime}(\theta)$ and $\Phi^{\prime \prime}(\theta)$ denote the vectors

$$
\begin{aligned}
\Phi(\theta) & =\left[\phi_{1}(\theta), \phi_{2}(\theta), \ldots, \phi_{n}(\theta)\right]^{T} \\
\Phi^{\prime}(\theta) & =\left[\phi_{1}^{\prime}(\theta), \phi_{2}^{\prime}(\theta), \ldots, \phi_{n}^{\prime}(\theta)\right]^{T} \\
\Phi^{\prime \prime}(\theta) & =\left[\phi_{1}^{\prime \prime}(\theta), \phi_{2}^{\prime \prime}(\theta), \ldots, \phi_{n}^{\prime \prime}(\theta)\right]^{T}
\end{aligned}
$$

Proof's Sketch (cont'd): Since rank $B(q)=n-1$, then there exists a $1 \times n$ raw function $B^{\perp}(q)$ such that

$$
B^{\perp}(q) B(q) u^{*}=0, \quad \forall q
$$

Proof's Sketch (cont'd): Since rank $B(q)=n-1$, then there exists a $1 \times n$ raw function $B^{\perp}(q)$ such that

$$
B^{\perp}(q) B(q) u^{*}=0, \quad \forall q
$$

Then the functions $\alpha(\cdot), \beta(\cdot)$ and $\gamma(\cdot)$ of the system

$$
\alpha(\theta) \ddot{\theta}+\beta(\theta) \dot{\theta}^{2}+\gamma(\theta)=0
$$

can be computed as follows

$$
\begin{aligned}
\alpha(\theta)= & B^{\perp}(\Phi(\theta)) M(\Phi(\theta)) \Phi^{\prime}(\theta) \\
\beta(\theta)= & B^{\perp}(\Phi(\theta))\left[M(\Phi(\theta)) \Phi^{\prime \prime}(\theta)+\right. \\
& \left.\quad+C\left(\Phi(\theta), \Phi^{\prime}(\theta)\right) \Phi^{\prime}(\theta)-R\left(\Phi(\theta), \Phi^{\prime}(\theta)\right)\right] \\
\gamma(\theta)= & B^{\perp}(\Phi(\theta)) G(\Phi(\theta))
\end{aligned}
$$

Comments on Underactuation $=2$:
Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

Comments on Underactuation $=2$:
Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

If the dynamics are
$M(q)\left[\begin{array}{c}\ddot{q}_{1} \\ \ddot{q}_{2} \\ \vdots \\ \ddot{q}_{n}\end{array}\right]+C(q, \dot{q})\left[\begin{array}{c}\dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n}\end{array}\right]+\left[\begin{array}{c}g_{1}(q) \\ g_{2}(q) \\ \vdots \\ g_{n}(q)\end{array}\right]=\left[\begin{array}{c}\dot{q}^{T} r_{1}(q) \dot{q} \\ \dot{q}^{T} r_{2}(q) \dot{q} \\ \vdots \\ \dot{q}^{T} r_{n}(q) \dot{q}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ u_{3} \\ \vdots\end{array}\right]$

Comments on Underactuation $=2$:
Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

If the dynamics are
$M(q)\left[\begin{array}{c}\ddot{q}_{1} \\ \ddot{q}_{2} \\ \vdots \\ \ddot{q}_{n}\end{array}\right]+C(q, \dot{q})\left[\begin{array}{c}\dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n}\end{array}\right]+\left[\begin{array}{c}g_{1}(q) \\ g_{2}(q) \\ \vdots \\ g_{n}(q)\end{array}\right]=\left[\begin{array}{c}\dot{q}^{T} r_{1}(q) \dot{q} \\ \dot{q}^{T} r_{2}(q) \dot{q} \\ \vdots \\ \dot{q}^{T} r_{n}(q) \dot{q}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ u_{3} \\ \vdots\end{array}\right]$
Then one picks up two first equations (independent on control)

$$
\begin{aligned}
& m_{11}(q) \ddot{q}_{1}+\cdots+m_{1 n}(q) \ddot{q}_{n}+ \\
& \quad+c_{11}(q, \dot{q}) \dot{q}_{1}+\cdots+c_{1 n}(q, \dot{q}) \dot{q}_{n}+g_{1}(q)=\dot{q}^{T} r_{1}(q) \dot{q}+0
\end{aligned}
$$

$m_{21}(q) \ddot{q}_{1}+\cdots+m_{2 n}(q) \ddot{q}_{n}+$

$$
+c_{21}(q, \dot{q}) \dot{q}_{1}+\cdots+c_{2 n}(q, \dot{q}) \dot{q}_{n}+g_{2}(q)=\dot{q}^{T} r_{2}(q) \dot{q}+0
$$

Comments on Underactuation $=2$:
Invariance of the relations $q_{i}=\phi_{i}(\theta)$ implies

$$
\begin{array}{ll}
\dot{q}_{1}=\phi_{1}^{\prime}(\theta) \dot{\theta}, & \ldots, \quad \dot{q}_{n}=\phi_{n}^{\prime}(\theta) \dot{\theta} \\
\ddot{q}_{1}=\phi_{1}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{1}^{\prime}(\theta) \ddot{\theta}, & \ldots, \quad \ddot{q}_{n}=\phi_{n}(\theta)^{\prime \prime} \dot{\theta}^{2}+\phi_{n}^{\prime}(\theta) \ddot{\theta}
\end{array}
$$

If the dynamics are
$M(q)\left[\begin{array}{c}\ddot{q}_{1} \\ \ddot{q}_{2} \\ \vdots \\ \ddot{q}_{n}\end{array}\right]+C(q, \dot{q})\left[\begin{array}{c}\dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n}\end{array}\right]+\left[\begin{array}{c}g_{1}(q) \\ g_{2}(q) \\ \vdots \\ g_{n}(q)\end{array}\right]=\left[\begin{array}{c}\dot{q}^{T} r_{1}(q) \dot{q} \\ \dot{q}^{T} r_{2}(q) \dot{q} \\ \vdots \\ \dot{q}^{T} r_{n}(q) \dot{q}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ u_{3} \\ \vdots\end{array}\right]$
Then two first equations (independent on control) result in

$$
\begin{aligned}
& \alpha_{1}(\theta) \ddot{\theta}+\beta_{1}(\theta) \dot{\theta}^{2}+\gamma_{1}(\theta)=0 \\
& \alpha_{2}(\theta) \ddot{\theta}+\beta_{2}(\theta) \dot{\theta}^{2}+\gamma_{2}(\theta)=0
\end{aligned}
$$

and $\theta(t)$ is the solution of both equations!

Integral of Motion: Suppose the solution

$$
\theta(t)=\theta\left(t, \theta_{0}, \dot{\theta}_{0}\right)
$$

of the system

$$
\alpha(\theta) \ddot{\theta}+\beta(\theta) \dot{\theta}^{2}+\gamma(\theta)=0
$$

with initial conditions $\left[\theta_{0}, \dot{\theta}_{0}\right]$ and $\alpha\left(\theta_{0}\right) \neq 0$ exists.

Integral of Motion: Suppose the solution

$$
\theta(t)=\theta\left(t, \theta_{0}, \dot{\theta}_{0}\right)
$$

of the system

$$
\alpha(\theta) \ddot{\theta}+\beta(\theta) \dot{\theta}^{2}+\gamma(\theta)=0
$$

with initial conditions $\left[\theta_{0}, \dot{\theta}_{0}\right]$ and $\alpha\left(\theta_{0}\right) \neq 0$ exists.
Then the function

$$
I\left(\theta, \dot{\theta}, \theta_{0}, \dot{\theta}_{0}\right)=\dot{\theta}^{2}-\psi\left(\theta_{0}, \theta\right)\left[\dot{\theta}_{0}^{2}-\int_{\theta_{0}}^{\theta} \psi\left(s, \theta_{0}\right) \frac{2 \gamma(s)}{\alpha(s)} d s\right]
$$

with

$$
\psi\left(\theta_{0}, \theta_{1}\right)=\exp \left\{-2 \int_{\theta_{0}}^{\theta_{1}} \frac{\beta(\tau)}{\alpha(\tau)} d \tau\right\}
$$

preserves its zero-value along this (even unbounded) solution

$$
I\left(\theta(t), \dot{\theta}(t), \theta_{0}, \dot{\theta}_{0}\right) \equiv 0
$$

Integral is a Distance: Given the target orbit $\left[\theta^{\star}(t), \dot{\theta}^{\star}(t)\right]$, then

- For any x_{1} and x_{2} the function $I(\cdot)$ satisfies the identity

$$
I\left(x_{1}, x_{2}, \theta^{\star}(0), \dot{\theta}^{\star}(0)\right) \equiv I\left(x_{1}, x_{2}, \theta^{\star}(\rho), \dot{\theta}^{\star}(\rho)\right), \quad \rho \in[0, T]
$$

Integral is a Distance: Given the target orbit $\left[\theta^{\star}(t), \dot{\theta}^{\star}(t)\right]$, then

- For any x_{1} and x_{2} the function $I(\cdot)$ satisfies the identity

$$
I\left(x_{1}, x_{2}, \theta^{\star}(0), \dot{\theta}^{\star}(0)\right) \equiv I\left(x_{1}, x_{2}, \theta^{\star}(\rho), \dot{\theta}^{\star}(\rho)\right), \quad \rho \in[0, T]
$$

- Nearby the target orbit $|I(\cdot)|$ measures the distance to the orbit. Namely, the following approximation holds

$$
\begin{aligned}
& I\left(x_{1}, x_{2}, \theta^{\star}\left(\rho_{0}\right), \dot{\theta}^{\star}\left(\rho_{0}\right)\right)^{2}= \\
& =\min _{0 \leq \rho<T}\left\{\left|x_{1}-\theta^{\star}(\rho)\right|^{2}\right. \\
&
\end{aligned}
$$

Here

$$
\rho_{0}=\arg \min _{0 \leq \rho<T}\left\{\left|x_{1}-\theta^{\star}(\rho)\right|^{2}+\left|x_{2}-\dot{\theta}^{\star}(\rho)\right|^{2}\right\}
$$

New Passivity Relation:

The time derivative of the function $I(\theta, \dot{\theta}, x, y)$ defined as

$$
I=\dot{\theta}^{2}-\exp \left\{-2 \int_{x}^{\theta} \frac{\beta(\tau)}{\alpha(\tau)} d \tau\right\}\left[y^{2}-\int_{x}^{\theta} \exp \left\{2 \int_{x}^{s} \frac{\beta(\tau)}{\alpha(\tau)} d \tau\right\} \frac{2 \gamma(s)}{\alpha(s)} d s\right]
$$

with x and y being some constants, calculated along a solution of the system

$$
\alpha(\theta) \ddot{\theta}+\beta(\theta) \dot{\theta}^{2}+\gamma(\theta)=W
$$

has the form

$$
\frac{d}{d t} I(\theta, \dot{\theta}, x, y)=\dot{\theta}\left\{\frac{2}{\alpha(\theta)} W-\frac{2 \beta(\theta)}{\alpha(\theta)} I(\theta, \dot{\theta}, x, y)\right\}
$$

Outline

- Motivation and Preliminaries
- Representation of a Motion for a Mechanical System
- Good Coordinates around a Target Motion
- Example

Transverse Coordinates:

Given a T-periodic motion

$$
q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}
$$

There are n-functions

$$
\phi_{1}(\cdot), \phi_{2}(\cdot), \ldots, \phi_{n}(\cdot)
$$

Transverse Coordinates:

Given a T-periodic motion

We can always assume that $q_{n}=\theta \quad \Rightarrow \quad \phi_{n}(\cdot)$ is trivial!

Transverse Coordinates:

Given a T-periodic motion

$$
q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}
$$

There are n-functions

$$
\phi_{1}(\cdot), \phi_{2}(\cdot), \ldots, \phi_{n}(\cdot)
$$

We can always assume that $q_{n}=\theta \quad \Rightarrow \quad \phi_{n}(\cdot)$ is trivial!
New n-generalized coordinates are θ and $y=\left(y_{1}, \ldots, y_{n-1}\right)$

$$
y_{1}=q_{1}-\phi_{1}(\theta), \quad \ldots, \quad y_{n-1}=q_{n-1}-\phi_{n-1}(\theta)
$$

Transverse Coordinates:

Given a T-periodic motion

$$
q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}
$$

There are n-functions

$$
\phi_{1}(\cdot), \phi_{2}(\cdot), \ldots, \phi_{n}(\cdot)
$$

We can always assume that $q_{n}=\theta \quad \Rightarrow \quad \phi_{n}(\cdot)$ is trivial!
New n-generalized coordinates are θ and $y=\left(y_{1}, \ldots, y_{n-1}\right)$

$$
y_{1}=q_{1}-\phi_{1}(\theta), \quad \ldots, \quad y_{n-1}=q_{n-1}-\phi_{n-1}(\theta)
$$

For the E-L system $x=\left(q_{1}, \ldots, q_{n}, \dot{q}_{1}, \ldots, \dot{q}_{n}\right)^{T}, \operatorname{dim} x=2 n$
Consider as a candidate for x_{\perp}-variable the set of quantities

$$
x_{\perp}=\left[I\left(\theta, \dot{\theta}, \theta^{\star}(0), \dot{\theta}^{\star}(0)\right), y_{1}, \ldots, y_{n-1}, \dot{y}_{1}, \ldots, \dot{y}_{n-1}\right]^{T}
$$

Transverse Coordinates:

With the choice

$$
x_{\perp}=\left[I\left(\theta, \dot{\theta}, \theta^{\star}(0), \dot{\theta}^{\star}(0)\right), y_{1}, \ldots, y_{n-1}, \dot{y}_{1}, \ldots, \dot{y}_{n-1}\right]^{T}
$$

one can compute analytically the linearization of transverse dynamics of the underactuated Euler-Lagrange system

$$
\frac{d}{d t}\left[\frac{\partial \mathcal{L}}{\partial \dot{q}}\right]-\frac{\partial \mathcal{L}}{\partial q}=R(q, \dot{q})+B(q) u
$$

around its solution

$$
q^{\star}(t)=\left(q_{1}^{\star}(t), q_{2}^{\star}(t), \ldots, q_{n}^{\star}(t)\right)^{T}
$$

Outline

- Motivation and Preliminaries
- Representation of a Motion for a Mechanical System
- Good Coordinates around a Target Motion
- Example

How to Plan a Motion for a Unicycle
Motion planning for the dynamical model

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

can be quite non-trivial.

How to Plan a Motion for a Unicycle
Motion planning for the dynamical model

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

can be quite non-trivial.
Find feasible motions of the system consistent with requirement the center of mass should stay on a circle of radius R

How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

can be quite non-trivial.
Find feasible motions of the system consistent with requirement the center of mass should stay on a circle of radius R
I.e. along any such motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ the relations hold

$$
x_{c}(t)=R \cdot \cos \left(\theta_{c}(t)-\frac{\pi}{2}\right) \quad y_{c}(t)=R \cdot \sin \left(\theta_{c}(t)-\frac{\pi}{2}\right)
$$

How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

can be quite non-trivial.
Find feasible motions of the system consistent with requirement the center of mass should stay on a circle of radius R
I.e. along any such motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ the relations hold

$$
x_{c}(t)=R \cdot \sin \theta_{c}(t) \quad y_{c}(t)=-R \cdot \cos \theta_{c}(t)
$$

How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

can be quite non-trivial.
Find feasible motions of the system consistent with requirement the center of mass should stay on a circle of radius R
I.e. along any such motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ the relations hold

$$
\begin{aligned}
& x_{c}(t)=R \cdot \sin \theta_{c}(t) \\
& \dot{x}_{c}(t)=R \cdot \cos \theta_{c}(t) \cdot \dot{\theta}_{c}(t)
\end{aligned}
$$

$$
y_{c}(t)=-R \cdot \cos \theta_{c}(t)
$$

$$
\dot{y}_{c}(t)=R \cdot \sin \theta_{c}(t) \cdot \dot{\theta}_{c}(t)
$$

How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

can be quite non-trivial.
Find feasible motions of the system consistent with requirement the center of mass should stay on a circle of radius R
I.e. along any such motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ the relations hold

$$
\begin{array}{ll}
x_{c}(t)=R \cdot \sin \theta_{c}(t) & y_{c}(t)=-R \cdot \cos \theta_{c}(t) \\
\hline \dot{x}_{c}(t)=R \cdot \cos \theta_{c}(t) \cdot \dot{\theta}_{c}(t) & \dot{y}_{c}(t)=R \cdot \sin \theta_{c}(t) \cdot \dot{\theta}_{c}(t) \\
\hline \ddot{x}_{c}=R\left[\cos \theta_{c} \ddot{\theta}_{c}-\sin \theta_{c} \dot{\theta}_{c}^{2}\right] & \ddot{y}_{c}=R\left[\sin \theta_{c} \ddot{\theta}_{c}+\cos \theta_{c} \dot{\theta}_{c}^{2}\right]
\end{array}
$$

How to Plan a Motion for a Unicycle
Along a circular motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ of the system

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

the relations hold

$$
\ddot{x}_{c}=R\left[\cos \theta_{c} \ddot{\theta}_{c}-\sin \theta_{c} \dot{\theta}_{c}^{2}\right]
$$

$$
\ddot{y}_{c}=R\left[\sin \theta_{c} \ddot{\theta}_{c}+\cos \theta_{c} \dot{\theta}_{c}^{2}\right]
$$

How to Plan a Motion for a Unicycle
Along a circular motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ of the system

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

the relations hold

$$
\begin{aligned}
\cos \theta_{c} \cdot \ddot{x}_{c} & =\cos \theta_{c} \cdot R \cdot\left[\cos \theta_{c} \ddot{\theta}_{c}-\sin \theta_{c} \dot{\theta}_{c}^{2}\right] \\
\sin \theta_{c} \cdot \ddot{y}_{c} & =\sin \theta_{c} \cdot R \cdot\left[\sin \theta_{c} \ddot{\theta}_{c}+\cos \theta_{c} \dot{\theta}_{c}^{2}\right]
\end{aligned}
$$

How to Plan a Motion for a Unicycle
Along a circular motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ of the system

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

the relations hold

$$
\begin{aligned}
\cos \theta_{c} \cdot \ddot{x}_{c} & =\cos \theta_{c} \cdot R \cdot\left[\cos \theta_{c} \ddot{\theta}_{c}-\sin \theta_{c} \dot{\theta}_{c}^{2}\right] \\
\sin \theta_{c} \cdot \ddot{y}_{c} & =\sin \theta_{c} \cdot R \cdot\left[\sin \theta_{c} \ddot{\theta}_{c}+\cos \theta_{c} \dot{\theta}_{c}^{2}\right] \\
& \Downarrow \\
\cos \theta_{c} \cdot \ddot{x}_{c}+\sin \theta_{c} \cdot \ddot{y}_{c} & =R \ddot{\theta}_{c}
\end{aligned}
$$

How to Plan a Motion for a Unicycle
Along a circular motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ of the system

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

the relations hold

$$
\begin{aligned}
\cos \theta_{c} \cdot \ddot{x}_{c} & =\cos \theta_{c} \cdot R \cdot\left[\cos \theta_{c} \ddot{\theta}_{c}-\sin \theta_{c} \dot{\theta}_{c}^{2}\right] \\
\sin \theta_{c} \cdot \ddot{y}_{c} & =\sin \theta_{c} \cdot R \cdot\left[\sin \theta_{c} \ddot{\theta}_{c}+\cos \theta_{c} \dot{\theta}_{c}^{2}\right] \\
& \Downarrow \\
\cos \theta_{c} \cdot \ddot{x}_{c}+\sin \theta_{c} \cdot \ddot{y}_{c} & =R \cdot \ddot{\theta}_{c} \\
& \Downarrow \\
0 & =R \cdot \ddot{\theta}_{c}
\end{aligned}
$$

How to Plan a Motion for a Unicycle
Any circular motion $\left[x_{c}(t), y_{c}(t), \theta_{c}(t)\right]$ of the system

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

has the form

$$
\begin{aligned}
\theta_{c}(t) & =\omega_{c} \cdot t+\theta_{0} \\
x_{c}(t) & =R \cdot \sin \theta_{c}(t) \\
y_{c}(t) & =-R \cdot \cos \theta_{c}(t) \\
u_{c}(t) & =0
\end{aligned}
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin Orbital stability of the motion means that the distance to the trajectory decays to zero

Steps in Orbital Stabilization of a Cyclic Motion of a Coin
Orbital stability of the motion means that the distance to the trajectory decays to zero

The state space vector of the mechanical system is

$$
[x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}]
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that the distance to the trajectory decays to zero

The state space vector of the mechanical system is

$$
[x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}]
$$

We search for change of coordinates

$$
[\bullet, \bullet, \bullet, \bullet, \bullet, \bullet]
$$

such that most of new coordinates equal to zero on the motion
$\theta_{\star}(t)=\omega \cdot t+\theta_{0}, \quad x_{\star}(t)=R \sin \left(\omega \cdot t+\theta_{0}\right), \quad y_{\star}(t)=-R \cos \left(\omega \cdot t+\theta_{0}\right)$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that the distance to the trajectory decays to zero

The state space vector of the mechanical system is

$$
[x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}]
$$

We search for change of coordinates

$$
[\bullet, \bullet, \bullet, \bullet, \bullet, \bullet]
$$

such that most of new coordinates equal to zero on the motion
$\theta_{\star}(t)=\omega \cdot t+\theta_{0}, \quad x_{\star}(t)=R \sin \left(\omega \cdot t+\theta_{0}\right), \quad y_{\star}(t)=-R \cos \left(\omega \cdot t+\theta_{0}\right)$
Candidates

$$
z_{1}=x-R \sin \theta, \quad z_{2}=y+R \cos \theta
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that the distance to the trajectory decays to zero

The state space vector of the mechanical system is

$$
[x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}]
$$

We search for change of coordinates

$$
[\bullet, \bullet, \bullet, \bullet, \bullet, \bullet]
$$

such that most of new coordinates equal to zero on the motion
$\theta_{\star}(t)=\omega \cdot t+\theta_{0}, \quad x_{\star}(t)=R \sin \left(\omega \cdot t+\theta_{0}\right), \quad y_{\star}(t)=-R \cos \left(\omega \cdot t+\theta_{0}\right)$
Candidates

$$
\dot{z}_{1}=\dot{x}-R \cos \theta \cdot \dot{\theta}, \quad \dot{z}_{2}=\dot{y}-R \sin \theta \cdot \dot{\theta}
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that the distance to the trajectory decays to zero

The state space vector of the mechanical system is

$$
[x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}]
$$

We search for change of coordinates

$$
\left[z_{1}, z_{2}, \dot{z}_{1}, \dot{z}_{2}, \bullet, \bullet\right]
$$

such that most of new coordinates equal to zero on the motion
Candidates

$$
\begin{array}{cc}
z_{1}=x-R \sin \theta, & z_{2}=y+R \cos \theta \\
\dot{z}_{1}=\dot{x}-R \cos \theta \cdot \dot{\theta}, & \dot{z}_{2}=\dot{y}-R \sin \theta \cdot \dot{\theta}
\end{array}
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that the distance to the trajectory decays to zero

The state space vector of the mechanical system is

$$
[x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}]
$$

We search for change of coordinates

$$
\left[z_{1}, z_{2}, \dot{z}_{1}, \dot{z}_{2}, \bullet, \bullet\right]
$$

such that most of new coordinates equal to zero on the motion
The dynamics of $[\theta, \dot{\theta}]$-variables

$$
J \ddot{\theta}=u
$$

can be rewritten in $[\theta, I]$-coordinates with $I=\dot{\theta}^{2}-\omega^{2}$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that the distance to the trajectory decays to zero

The state space vector of the mechanical system is

$$
[x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}]
$$

We search for change of coordinates

$$
\left[z_{1}, z_{2}, \dot{z}_{1}, \dot{z}_{2}, I, \theta\right]
$$

such that most of new coordinates equal to zero on the motion
Candidates for transverse coordinates

$$
\begin{gathered}
z_{1}=x-R \sin \theta, \quad z_{2}=y+R \cos \theta, \quad I=\dot{\theta}^{2}-\omega^{2} \\
\dot{z}_{1}=\dot{x}-R \cos \theta \cdot \dot{\theta}, \quad \dot{z}_{2}=\dot{y}-R \sin \theta \cdot \dot{\theta}
\end{gathered}
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Linearization of transverse coordinates

$$
X_{\perp}=\left[z_{1}, z_{2}, \dot{z}_{1}, \dot{z}_{2}, I\right]
$$

along the motion
$\theta_{\star}(t)=\omega \cdot t+\theta_{0}, \quad x_{\star}(t)=R \sin \left(\omega \cdot t+\theta_{0}\right), \quad y_{\star}(t)=-R \cos \left(\omega \cdot t+\theta_{0}\right)$
of the system

$$
\begin{aligned}
\ddot{x} & =-[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \sin (\theta) \\
\ddot{y} & =[\dot{y} \cdot \sin \theta+\dot{x} \cdot \cos \theta] \cdot \dot{\theta} \cdot \cos (\theta) \\
J \ddot{\theta} & =u
\end{aligned}
$$

has the form

$$
\frac{d}{d t}[\delta X]=A(t) \delta X+B(t) \delta u
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Coefficients of $\boldsymbol{A}(t)$ and $B(t)$ are

$$
A(t)=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -\omega & 0 \\
0 & 0 & \omega & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad B(t)=\left[\begin{array}{c}
0 \\
0 \\
-R \cos \left(\omega t+\theta_{0}\right) \\
-R \sin \left(\omega t+\theta_{0}\right) \\
\omega / J
\end{array}\right]
$$

Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Coefficients of $A(t)$ and $B(t)$ are

$$
A(t)=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -\omega & 0 \\
0 & 0 & \omega & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad B(t)=\left[\begin{array}{c}
0 \\
0 \\
-R \cos \left(\omega t+\theta_{0}\right) \\
-R \sin \left(\omega t+\theta_{0}\right) \\
\omega / J
\end{array}\right]
$$

The controllability Gramian computed over the period

$$
W_{c}=\int_{0}^{2 \pi / \omega} e^{-A \tau} B(\tau) B(\tau)^{T} e^{-A^{T} \tau} d \tau
$$

has three positive and two zero eigenvalues for any $J, R>0$

$$
\lambda\left(W_{c}\right)=\left\{w_{1}, w_{2}, w_{3}, 0,0\right\}, \quad w_{i}>0
$$

Concluding Remarks:

- We suggest a choice of transverse coordinates for a motion of mechanical system, which experience the quadratic in velocities reaction forces;

Concluding Remarks:

- We suggest a choice of transverse coordinates for a motion of mechanical system, which experience the quadratic in velocities reaction forces;
- We suggest
- New approach for planning periodic motions
- Analytical formulas for computing a linearization of the dynamics around the orbit
- Procedure for synthesis of orbitally stabilizing controller
- Method for analysis of closed loop systems around orbit

Concluding Remarks:

- We suggest a choice of transverse coordinates for a motion of mechanical system, which experience the quadratic in velocities reaction forces;
- We suggest
- New approach for planning periodic motions
- Analytical formulas for computing a linearization of the dynamics around the orbit
- Procedure for synthesis of orbitally stabilizing controller
- Method for analysis of closed loop systems around orbit
- The approach can be extended if the motion does not admit parametrization by one choice of VHC

