Projection Operator Stategies in the
 Optimization of Trajectory Functionals

John Hauser
Univ of Colorado

Why do Trajectory Optimization?

Well known:
■ Optimal control may be used to provide stabilization, tracking, etc., for nonlinear systems

■ Model predictive/receding horizon strategies have been used successful for a number of nonlinear systems with constraints

Why do Trajectory Optimization?

Well known:
■ Optimal control may be used to provide stabilization, tracking, etc., for nonlinear systems

■ Model predictive/receding horizon strategies have been used successful for a number of nonlinear systems with constraints

Also:
■ Trajectory exploration: What cool stuff can this system do?

- capabilities
- limitations
- bad stuff [videos]
- Trajectory modeling: Can the trajectories of this (complex) system be modeled by those of a simpler system? [e.g., reduced order, flat, ...]

■ Objective function design: needed to exploit system capabilities
■ Systems analysis: investigate system structure, e.g., controllability

Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

$$
h(x(\cdot), u(\cdot)):=\int_{0}^{T} l(\tau, x(\tau), u(\tau)) d \tau+m(x(T))
$$

over the set \mathcal{T} of bounded trajectories of the nonlinear system

$$
\dot{x}(t)=f(x(t), u(t))
$$

with $x(0)=x_{0} \quad$ (\ldots without additional constraints).
We write this constrained problem as

$$
\min _{\xi \in \mathcal{T}} h(\xi)
$$

where $\xi=(\alpha(\cdot), \mu(\cdot))$ is in general a bounded curve with $\alpha(\cdot)$ continuous and $\alpha(0)=x_{0}$. How may we approach this problem?

Unconstrained (?) Optimal Control

- In the usual case, the choice of a control trajectory $u(\cdot)$ determines the state trajectory $x(\cdot)$ (recall that x_{0} has been specified). With such a trajectory parametrization, one obtains so-called unconstrained optimal control problem

$$
\min _{u(\cdot)} h\left(x\left(\cdot ; x_{0}, u(\cdot)\right), u(\cdot)\right)
$$

■ Why not just search over control trajectories $u(\cdot)$? If the system described by f is sufficiently stable, then such a shooting method may be effective.

■ Unfortunately, the modulus of continuity of the map $u(\cdot) \mapsto(x(\cdot), u(\cdot))$ is often so large that such shooting is computationally useless:
small changes in $u(\cdot)$ may give LARGE changes in $x(\cdot)$
■ Indeed, finite escape time issues may make the set of admissible inputs extremely difficult to describe (and possibly shrinking as T grows).

Key Idea: a trajectory tracking controller may be used to minimize the effects of system instabilities, providing a numerically effective, redundant trajectory parametrization.

Let $\xi(t)=(\alpha(t), \mu(t)), t \geq 0$, be a bounded curve and
let $\eta(t)=(x(t), u(t)), t \geq 0$, be the trajectory of f determined by the nonlinear feedback system

$$
\begin{aligned}
\dot{x} & =f(x, u), \quad x(0)=x_{0}, \\
u & =\mu(t)+K(t)(\alpha(t)-x)
\end{aligned}
$$

The map

$$
\mathcal{P}: \xi=(\alpha(\cdot), \mu(\cdot)) \mapsto \eta=(x(\cdot), u(\cdot))
$$

is a continuous, Nonlinear Projection Operator.
For each $\xi \in \operatorname{dom} \mathcal{P}$, the curve $\eta=\mathcal{P}(\xi)$ is a trajectory.
Note: the trajectory contains both state and control curves.

Projection Operator

Projection Operator Properties

Suppose that f is C^{r} and that K is bounded and exponentially stabilizes $\xi_{0} \in \mathcal{T}$. Then

■ \mathcal{P} is well defined on an L_{∞} neighborhood of ξ_{0}

- \mathcal{P} is C^{r} (Fréchet diff wrt L_{∞} norm)
- $\xi \in \mathcal{T}$ if and only if $\xi=\mathcal{P}(\xi)$
- $\mathcal{P}=\mathcal{P} \circ \mathcal{P}$ (projection)

On the finite interval $[0, T]$, choose $K(\cdot)$ to obtain stability-like properties so that the modulus of continuity of \mathcal{P} is relatively small.
Note: on the infinite horizon, instabilities must be stabilized in order to obtain a projection operator; consider $\dot{x}=x+u$.

Trajectory Manifold

Thm \mathcal{T} is a Banach manifold: Every $\eta \in \mathcal{T}$ near $\xi \in \mathcal{T}$ can be uniquely represented as

$$
\eta=\mathcal{P}(\xi+\zeta), \quad \zeta \in T_{\xi} \mathcal{T}
$$

Key: the projection operator $D \mathcal{P}(\xi)$ provides the required subspace splitting.

Computation of $D^{2} \mathcal{P}$

We may use ODEs to calculate $D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)$:

$$
\begin{aligned}
& \eta=(x, u)=\mathcal{P}(\xi) \quad=\quad \mathcal{P}(\alpha, \mu) \\
& \gamma_{i}=\left(z_{i}, v_{i}\right)=D \mathcal{P}(\xi) \cdot \zeta_{i}=D \mathcal{P}(\xi) \cdot\left(\beta_{i}, \nu_{i}\right) \\
& \omega=(y, w)=D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right) \\
& \eta(t): \quad \dot{x}(t)=f(x(t), u(t)), \\
& x(0)=x_{0} \\
& u(t)=\mu(t)+K(t)(\alpha(t)-x(t)) \\
& \gamma_{i}(t): \quad \dot{z}_{i}(t)=A(\eta(t)) z_{i}(t)+B(\eta(t)) v_{i}(t), \quad z_{i}(0)=0 \\
& v_{i}(t)=\nu_{i}(t)+K(t)\left(\beta_{i}(t)-z_{i}(t)\right) \\
& \omega(t): \quad \dot{y}(t)=A(\eta(t)) y(t)+B(\eta(t)) w(t)+D^{2} f(\eta(t)) \cdot\left(\gamma_{1}(t), \gamma_{2}(t)\right) \\
& w(t)=-K(t) y(t), \quad y(0)=0
\end{aligned}
$$

■ The derivatives are about the trajectory $\eta=\mathcal{P}(\xi)$

- The feedback $K(\cdot)$ stabilizes the state at each level

Equivalent Optimization Problems

Using the projection operator, we see that

$$
\begin{gathered}
\min _{\xi \in \mathcal{T}} h(\xi)=\min _{\xi=\mathcal{P}(\xi)} h(\xi) \\
h(x(\cdot), u(\cdot))=\int_{0}^{T} l(\tau, x(\tau), u(\tau)) d \tau+m(x(T))
\end{gathered}
$$

Furthermore, defining

$$
g(\xi):=h(\mathcal{P}(\xi))
$$

for $\xi \in \mathcal{U}$ with $\mathcal{P}(\mathcal{U}) \subset \mathcal{U} \subset \operatorname{dom} \mathcal{P}$, we see that

$$
\underbrace{\min _{\xi \in \mathcal{T}} h(\xi)}_{\text {constrained }} \text { and } \underbrace{\min _{\xi \in \mathcal{U}} g(\xi)}_{\text {unconstrained }}
$$

are equivalent in the sense that
■ if $\xi^{*} \in \mathcal{T} \cap \mathcal{U}$ is a constrained local minimum of h, then it is an unconstrained local minimum of g;

- if $\xi^{+} \in \mathcal{U}$ is an unconstrained local minimum of g in \mathcal{U}, then $\xi^{*}=\mathcal{P}\left(\xi^{+}\right)$is a constrained local minimum of h.
given initial trajectory $\xi_{0} \in \mathcal{T}$

```
for i=0,1, 2,\ldots
```

 redesign feedback \(K(\cdot)\) if desired/needed
 descent direction \(\quad \zeta_{i}=\arg \min _{\zeta \in T_{\xi_{i}} \mathcal{T}} D h\left(\xi_{i}\right) \cdot \zeta+\frac{1}{2} D^{2} g\left(\xi_{i}\right) \cdot(\zeta, \zeta)\)
 line search
 \(\gamma_{i}=\arg \min _{\gamma \in(0,1]} h\left(\mathcal{P}\left(\xi_{i}+\gamma \zeta_{i}\right)\right)\)
 update
 \(\xi_{i+1}=\mathcal{P}\left(\xi_{i}+\gamma_{i} \zeta_{i}\right)\)
 end
given initial trajectory $\xi_{0} \in \mathcal{T}$

$$
\text { for } i=0,1,2, \ldots
$$

redesign feedback $K(\cdot)$ if desired/needed
descent direction $\quad \zeta_{i}=\arg \min _{\zeta \in T_{\xi_{i}} \tau} D h\left(\xi_{i}\right) \cdot \zeta+\frac{1}{2} D^{2} g\left(\xi_{i}\right) \cdot(\zeta, \zeta)$
line search

$$
\gamma_{i}=\arg \min _{\gamma \in(0,1]} h\left(\mathcal{P}\left(\xi_{i}+\gamma \zeta_{i}\right)\right)
$$

update

$$
\xi_{i+1}=\mathcal{P}\left(\xi_{i}+\gamma_{i} \zeta_{i}\right)
$$

end
When $D^{2} g\left(\xi_{i}\right)$ is not positive definite on $T_{\xi_{i}} \mathcal{T}$, one may obtain a quasi-Newton descent direction by solving

$$
\zeta_{i}=\arg \min _{\zeta \in T_{\xi_{i}} \mathcal{T}} D h\left(\xi_{i}\right) \cdot \zeta+\frac{1}{2} q\left(\xi_{i}\right) \cdot(\zeta, \zeta)
$$

where $q\left(\xi_{i}\right)$ is positive definite on $T_{\xi_{i}} \mathcal{T}$ (e.g., an approximation to $\left.D^{2} g\left(\xi_{i}\right)\right)$

This direct method generates a descending trajectory sequence in Banach space!

Brockett's Integrator

$$
\begin{gathered}
\min \int_{0}^{1}\|u(\tau)\|^{2} / 2 d \tau+\|x(T)\|_{P_{1}}^{2} / 2 \\
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}=u_{2} \\
\dot{x}_{3}=x_{2} u_{1}-x_{1} u_{2} \\
P_{1}=\operatorname{diag}\left(\left[\begin{array}{lll}
10 & 10 & 100
\end{array}\right]\right)
\end{gathered}
$$

Derivatives

$$
\begin{aligned}
& g(\xi)=h(\mathcal{P}(\xi)) \\
& D g(\xi) \cdot \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \zeta \\
& D^{2} g(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)= \\
& D^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \zeta_{1}, D \mathcal{P}(\xi) \cdot \zeta_{2}\right) \\
& \quad+D h(\mathcal{P}(\xi)) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\end{aligned}
$$

Derivatives

$$
\begin{aligned}
& g(\xi)=h(\mathcal{P}(\xi)) \\
& D g(\xi) \cdot \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \zeta \\
& D^{2} g(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)= \\
& D^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \zeta_{1}, D \mathcal{P}(\xi) \cdot \zeta_{2}\right) \\
& \quad+D h(\mathcal{P}(\xi)) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\end{aligned}
$$

When $\xi \in \mathcal{T}, \zeta_{i} \in T_{\xi} \mathcal{T}$,

$$
\begin{aligned}
& D g(\xi) \cdot \zeta=D h(\xi) \cdot \zeta \\
& D^{2} g(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)= \\
& \quad D^{2} h(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)+\underbrace{D h(\xi) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)}_{\text {generalizes Lagrange multiplier }}
\end{aligned}
$$

$$
\begin{aligned}
D h & (\xi) \cdot D^{2} \mathcal{P}(\xi) \cdot(\zeta, \zeta)=\int_{0}^{T} D_{2} l(\tau, \xi(\tau)) \cdot\left(D^{2} \mathcal{P}(\xi) \cdot(\zeta, \zeta)\right)(\tau) d \tau \\
& =\int_{0}^{T} D_{2} l(\tau, \xi(\tau)) \cdot\left[\begin{array}{c}
I \\
-K(\tau)
\end{array}\right] \int_{0}^{\tau} \Phi_{c}(\tau, s) D^{2} f(\xi(s)) \cdot(\zeta(s), \zeta(s)) d s d \tau \\
& =\int_{0}^{T} \int_{s}^{T} D_{2} l(\tau, \xi(\tau)) \cdot\left[\begin{array}{c}
I \\
-K(\tau)
\end{array}\right] \Phi_{c}(\tau, s) d \tau D^{2} f(\xi(s)) \cdot(\zeta(s), \zeta(s)) d s \\
& =\int_{0}^{T} q(s)^{T} D^{2} f(\xi(s)) \cdot(\zeta(s), \zeta(s)) d s
\end{aligned}
$$

where

$$
\dot{q}(t)=-[A(\xi(t))-B(\xi(t)) K(t)]^{T} q(t)-l_{x}^{T}(t)+K(t)^{T} l_{u}^{T}(t), \quad q(T)=0
$$

We obtain a stabilized adjoint variable, independent of stationary considerations!

For $\xi \in \mathcal{T}$ and $\zeta \in T_{\xi} \mathcal{P}, \quad D^{2} g(\xi) \cdot(\zeta, \zeta)$ has the form

$$
\int_{0}^{T}\binom{z(\tau)}{v(\tau)}^{T}\left[\begin{array}{ll}
Q(\tau) & S(\tau) \\
S(\tau)^{T} & R(\tau)
\end{array}\right]\binom{z(\tau)}{v(\tau)} d \tau+z(T)^{T} P_{1} z(T)
$$

where

$$
W(t)=\left[\begin{array}{ll}
Q(\tau) & S(\tau) \\
S(\tau)^{T} & R(\tau)
\end{array}\right]
$$

has elements

$$
w_{i j}(t)=\frac{\partial^{2} l}{\partial \xi_{i} \partial \xi_{j}}(t, \xi(t))+\sum_{k=1}^{n} q_{k}(t) \frac{\partial^{2} f_{k}}{\partial \xi_{i} \partial \xi_{j}}(\xi(t))
$$

and $P_{1}=\frac{\partial^{2} m}{\partial x^{2}}(x(T))$.
In fact, $W(\cdot)$ is just the second derivative matrix of the Hamiltonian

$$
H(t, x, u, q)=l(t, x, u)+q^{T} f(x, u)
$$

Again, no stationary considerations.

descent direction LQ OCP

The descent direction problem is a linear quadratic optimal control problem

$$
\begin{gathered}
\min \int_{0}^{T}\binom{a(\tau)}{b(\tau)}^{T}\binom{z(\tau)}{v(\tau)}+\frac{1}{2}\binom{z(\tau)}{v(\tau)}^{T}\left[\begin{array}{ll}
Q(\tau) & S(\tau) \\
S(\tau)^{T} & R(\tau)
\end{array}\right]\binom{z(\tau)}{v(\tau)} d \tau \\
+r_{1}^{T} z(T)+z(T)^{T} P_{1} z(T) / 2
\end{gathered}
$$

subj to

$$
\dot{z}=A(t) z+B(t) v, \quad z(0)=0,
$$

where the cost is, in general, non-convex.
This LQ OCP (with PD $R(\cdot)$) has a unique solution if and only if

$$
\dot{P}+\tilde{A}^{T} P+P \tilde{A}-P B R^{-1} B^{T} P+\tilde{Q}=0, \quad P(T)=P_{1}
$$

has a bounded solution on $[0, T]$.
[$\tilde{A}=A-B R^{-1} S^{T}, \tilde{Q}=Q-S R^{-1} S^{T}$]

The descent direction problem is a linear quadratic optimal control problem

$$
\begin{gathered}
\min \int_{0}^{T}\binom{a(\tau)}{b(\tau)}^{T}\binom{z(\tau)}{v(\tau)}+\frac{1}{2}\binom{z(\tau)}{v(\tau)}^{T}\left[\begin{array}{cc}
Q(\tau) & S(\tau) \\
S(\tau)^{T} & R(\tau)
\end{array}\right]\binom{z(\tau)}{v(\tau)} d \tau \\
+r_{1}^{T} z(T)+z(T)^{T} P_{1} z(T) / 2
\end{gathered}
$$

subj to

$$
\dot{z}=A(t) z+B(t) v, \quad z(0)=0,
$$

where the cost is, in general, non-convex.
This LQ OCP (with PD $R(\cdot)$) has a unique solution if and only if

$$
\dot{P}+\tilde{A}^{T} P+P \tilde{A}-P B R^{-1} B^{T} P+\tilde{Q}=0, \quad P(T)=P_{1}
$$

has a bounded solution on $[0, T]$.
[$\tilde{A}=A-B R^{-1} S^{T}, \tilde{Q}=Q-S R^{-1} S^{T}$]

HELP:

How can we detect, numerically, a lack of positive definiteness?
How might we compute the minimum eigenvalue of q on the subspace?

$$
\begin{aligned}
& \ddot{\varphi}=a \sin \varphi+b \dot{\theta}^{2} \sin (\varphi-\theta)+b u \cos (\varphi-\theta) \\
& \ddot{\theta}=u
\end{aligned}
$$

quadratic approximation about $\theta=\pi / 2, \varphi=0$

$$
\begin{aligned}
\ddot{\varphi} & =a \varphi-b \dot{\theta}^{2}+b(\varphi-\theta) u \\
\ddot{\theta} & =u
\end{aligned}
$$

Trajectory Exploration: Rigid Motorcycle

RigidMoto system has

$$
\begin{aligned}
& 5 \text { states }: v, \beta, \varphi, \dot{\varphi}, \dot{\psi} \\
& 3 \text { inputs }: \delta, \kappa_{r}, \kappa_{f}
\end{aligned}
$$

The configuration variables, x, y, and ψ, are related to these kinematically.

RigidMoto dynamics

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc|cc}
m & 0 & 0 & 0 & \bar{\mu}_{f x} & \bar{\mu}_{r x} \\
0 & m & 0 & 0 & \bar{\mu}_{f y} & \bar{\mu}_{r y} \\
0 & 0 & m h s_{\varphi} & 0 & -1 & -1 \\
\hline 0 & 0 & I_{x} & I_{x z} c_{\varphi} & h\left(s_{\varphi}-c_{\varphi} \bar{\mu}_{f y}\right) & \left.c_{\varphi} \bar{\mu}_{r y}\right) \\
0 & 0 & 0 & I_{y} s_{\varphi} & h \bar{\mu}_{f x}+a\left(c_{\varphi}+s_{\varphi} \bar{\mu}_{f y}\right) & h \bar{\mu}_{r x}-b\left(c_{\varphi}+s_{\varphi} \bar{\mu} r y\right) \\
0 & 0 & I_{x z} c_{\varphi} & I_{z} c_{\varphi}^{2}+I_{y} s_{\varphi} & h s_{\varphi} \bar{\mu}_{f x}+a \bar{\mu}_{f y} & h s_{\varphi} \bar{\mu}_{r x}-b \bar{\mu}_{r y}
\end{array}\right]\left[\begin{array}{c}
a_{y} \\
\hline \ddot{\varphi} \\
\hline f_{f z} \\
f_{r z}
\end{array}\right]} \\
& +\left[\begin{array}{c}
0 \\
0 \\
m h c_{\varphi} \dot{\varphi}^{2}-m g \\
\left(I_{z}-I_{y}\right) c_{\varphi} s_{\varphi} \dot{\psi}^{2} \\
-I_{x z} \dot{\varphi}^{2}+\left(I_{x}+I_{y}-I_{z}\right) c_{\varphi} \dot{\varphi} \dot{\psi}+I_{x z} c_{\varphi}^{2} \dot{\psi}^{2} \\
-I_{x z} s_{\varphi} \dot{\varphi}^{2}+2\left(I_{y}-I_{z}\right) c_{\varphi} s_{\varphi} \dot{\varphi} \dot{\psi}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

trajectory exploration

the RigidMoto is a

model vehicle

to gain experience in

high performance maneuvering

To this end, we use nonlinear least squares trajectory optimization to explore system trajectories. That is, we consider the optimal control problem

$$
\begin{array}{cc}
\min & \left\|(x(\cdot), u(\cdot))-\left(x_{d}(\cdot), u_{d}(\cdot)\right)\right\|_{L_{2}}^{2} / 2 \\
\text { subj } & \dot{x}=f(x, u), \quad x(0)=x_{0},
\end{array}
$$

where $\|\cdot\|_{L_{2}}$ is a weighted L_{2} norm on $[0, T]$ and the desired (non) trajectory $\left(x_{d}(\cdot), u_{d}(\cdot)\right)$ is a trajectory exploration design parameter.

Trajectory Constraints

We investigate the use of a barrier function method for approximating the (local) solution of constrained optimal control problems of the form

$$
\begin{array}{cll}
\operatorname{minimize} & \int_{0}^{T} l(\tau, x(\tau), u(\tau)) d \tau+m(x(T)) \\
\text { subject to } & \dot{x}(t)=f(x(t), u(t)), & x(0)=x_{0} \\
& c_{j}(t, x(t), u(t)) \leq 0, & t \in[0, T], \text { a.e. } \\
& j=1, \ldots, k,
\end{array}
$$

where the data satisfies some reasonable smoothness and convexity properties.
Approximating OCPs will be unconstrained

Barrier Function Approach n

In finite dimensions, a solution to a C^{2} convex problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & c_{j}(x) \leq 0, \quad j=1, \ldots, k
\end{array}
$$

is found by solving a sequence of convex problems

$$
\min _{x \in C} f(x)-\epsilon \sum_{j} \log \left(-c_{j}(x)\right)
$$

where $C=\left\{x \in \mathbb{R}^{n}: c_{j}(x)<0\right\}$ is the open strictly feasible set.

Barrier Function Approach ∞

The direct OCP translation is

$$
\begin{gathered}
\min \int_{0}^{T} l(\tau, x(\tau), u(\tau))-\epsilon \sum_{j} \log \left(-c_{j}(\tau, x(\tau), u(\tau))\right) d \tau \\
+m(x(T))
\end{gathered}
$$

s.t. $\quad \dot{x}(t)=f(x(t), u(t)), \quad x(0)=x_{0}$

Suppose that at some $\epsilon_{0}>0$, this problem possesses a locally optimal trajectory $\xi_{\epsilon_{0}}^{*}=\left(x_{\epsilon_{0}}^{*}(\cdot), u_{\epsilon_{0}}^{*}(\cdot)\right)$ that is SSC and that the Hamiltonian is strongly convex in u. Then $\xi_{\epsilon_{0}}^{*}$ is a strictly feasible trajectory (of constrained problem) and the IFT indicates nice dependence on ϵ.
Looks promising ... but guaranteeing strict feasibility during optimization process is very difficult!

Approximate Barrier Function

For $0<\delta \leq 1$, define the C^{2} approximate log barrier function

$$
\begin{gathered}
\beta_{\delta}:(-\infty, \infty) \rightarrow(0, \infty) \\
\beta_{\delta}(z)= \begin{cases}-\log z & z>\delta \\
\frac{k-1}{k}\left[\left(\frac{z-k \delta}{(k-1) \delta}\right)^{k}-1\right]-\log \delta & z \leq \delta\end{cases}
\end{gathered}
$$

where $k>1$ is an even integer, e.g., $k=2$.
$\beta_{\delta}(\cdot)$ retains many of the important properties of the log barrier function.
Similar to $z \mapsto-\log z$: for strictly convex proper $c: \mathbb{R} \rightarrow \mathbb{R}$, $z \mapsto \beta_{\delta}(-c(z))$ is also strictly convex so that

$$
\min _{x \in C} f(x)+\epsilon \sum_{j} \beta_{\delta}\left(-c_{j}(x)\right)
$$

is a convex problem that has the same solution $\left(x_{\epsilon}^{*}\right)$ provided $\delta<c_{j}\left(x_{\epsilon}^{*}\right)$ for all j.

Returning to infinite dimensions, define, for $\xi=(\alpha(\cdot), \mu(\cdot))$

$$
b_{\delta}(\xi)=\int_{0}^{T} \sum_{j} \beta_{\delta}\left(-c_{j}(\tau, \alpha(\tau), \mu(\tau))\right) d \tau
$$

and consider unconstrained approximation (to constrained OCP)

$$
\min _{\xi \in \mathcal{T}} h(\xi)+\epsilon b_{\delta}(\xi)
$$

Note: $h(\cdot)+\epsilon b_{\delta}(\cdot)$ can be evaluated on any curve ξ in \widetilde{X}.
As in the finite dimensional case, a locally optimal trajectory ξ_{ϵ}^{*} for this problem is also locally optimal for the non $-\delta$ problem provided $\delta>0$ is sufficiently small.

Strategy

The projection operator based Newton method may be used to optimize the functional

$$
g_{\epsilon, \delta}(\xi)=h(\mathcal{P}(\xi))+\epsilon b_{\delta}(\mathcal{P}(\xi))
$$

as part of a continuation (or path following) method to seek an approximate solution to the constrained OCP.
The strategy is to start with a reasonably large ϵ and δ, for instance, $\epsilon=\delta=1$. Then, for the current ϵ and δ, the problem

$$
\min g_{\epsilon, \delta}(\xi)
$$

is solved using the Newton method starting from the current trajectory. If necessary or desired, the value is δ is reduced to ensure strict feasibility. Next, both ϵ and δ are decreased using, for instance, $\epsilon \leftarrow \epsilon / 10$ and $\delta \leftarrow \delta / 10$. Then, go back to the minimization step and continue.

PVTOL Example

