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Baseline System – Bags of Words

• Interest point detection

- Differences of Gaussian/Harris

• Feature extraction

- SIFT/SURF/DAISY

• Generating vocabularies – quantization

- hierarchical k-means  (Nister, Stewenius CVPR’06)

- approximate k-means (Philbin et al. CVPR’08)

• Bags of words

- measure image similarities based on the histogram of 

words with L1 or L2 norm

Our Focus
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Quantization – State of the Art

• ~ 1M words

• Hierarchical K-means, Approximate K-means, Approximate 

K-means + soft-assignment

• Advantage:

- efficient training

- fast matching or retrieval using inverted files

• Disadvantage?

- Unsupervised: Features quantized to the same word 

do not usually correspond 
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Evaluation

• Image query vs database (5000 images, 100 000 images) 

– mean average precision

• Image vs Image

• Descriptor vs descriptor

• Feature vs feature

• Aim: Improve on features and descriptors by evaluating 

and learning already on lower levels

• For this we need ground truth correspondences

• We aim at fast bottom up processes

• We use heavier algorithms for generating ground truth

• Feedback
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Obtaining ground truth data

• Static scenes

• Matches using deformable shape models

• Matches using geometry
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Reconstruction pipeline

Scene 

reconstructi

on
Photo 

ExplorerInput photographs
Relative camera 

positions and 

orientations

Point cloud

Sparse 

correspondence

Slide courtesy

of N. Snavely
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Examples from Lund

Lundagård Domkyrkan
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Ground-truth correspondences 

UBC Patch Data (Hua et al.

CVPR’09)

- Patch correspondences obtained

via 3D reconstructions

- Scale and orientation normalized

We train the vocabulary in the

manner that corresponding patches

tend to fall in the same word

(cluster)

Approximately 1.5 million patches

in 0.6 million classes
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Our approach

• Hierarchical splits

- At each level the features are split into

2 clusters

• Random plane

- At each split node, N (~1000) planes

are randomly generated, and the one

with lowest entropy is selected

• Local optimum

- Perturbing the selected plane to

obtain a locally optimal plane w.r.t the

entropies

N Random planes

0T

iw x d0T

iw x d



Lund University | Center for Mathematical Sciences | Mathematical Imaging Group

Our approach - Entropy
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Our Approach - Soft Assignment

• Margin 

- Instead of assigning each feature exactly to 1 cluster, we assign 

features smoothly to both clusters according to their directional 

distances to the best plane. 

- The smoothness is determined by the parameter m – the margin.
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Entropy minimization - local search

• Gradients derivation
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Entropy minimization - local search

• Gradients derivation

- the gradients of the entropy w.r.t the random plane 

direction (w), offset(d) and the margin (m) are derived for 

optimization step

• Optimization

- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method 

(Broyden, 1970) is used to find the local minimum



Lund University | Center for Mathematical Sciences | Mathematical Imaging Group

Experiments

• Extract SIFT features on the patches with default settings

• 20% of Statue of Liberty data for training 

• 10% of non-overlapped Statue of Liberty data for testing
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Result Evaluation

For evaluation --

• Matched pairs

- sets of pair-wise matching within each class

• Non-matched pairs

- pick an unmatched randomly for each feature

• TP (‘True Positive’)

- the percentage of matched pairs get the same word ID

• FP (‘False Positive’)

- the percentage of non-matched pairs get the same word ID
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Results
• Compare with hierarchical kmeans with 2 splits
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Results (cont.)

• Different margins
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Future Work

• Generalize to K splits at each levels

• Create additional large ground-truth dataset using

geometry with images from Lund, Malmö, Stockholm

• Use soft margin

• Vocabulary for combinations of words
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Thank you for your attention!



Lund University | Center for Mathematical Sciences | Mathematical Imaging Group



Lund University | Center for Mathematical Sciences | Mathematical Imaging Group



Lund University | Center for Mathematical Sciences | Mathematical Imaging Group

Further experiments

• 50% liberty for training

• 50% notredame for testing
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Put in the Oxford pipeline

HIK-2splits Entropy-opt

0.1641 0.1956

Train on 50% of the whole patch data (~750K features) with 65K 

words 

State of the art….train on 5M features with 50K words (Philbin 

2007)

kmeans AKM

0.464 0.453


