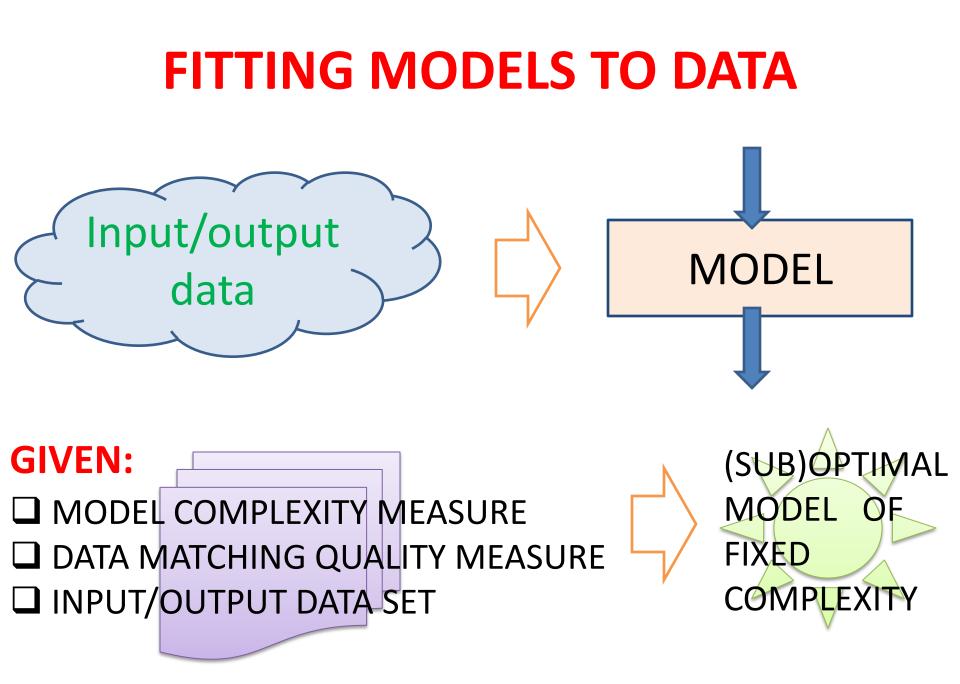
Convex Relaxations in Optimization-Based Identification of Robust Nonlinear Dynamical Models

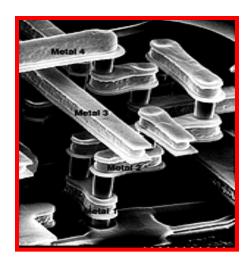
Alex Megretski, MIT

with M.Tobenkin, I.Manchester, B.Bond, Y.Lin R.Tedrake, L.Daniel, V.Stojanovic

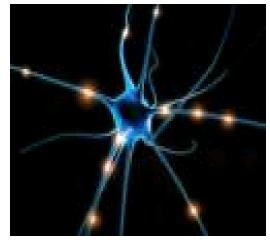
optimal fitting of rationally parameterized dynamical nonlinear system models



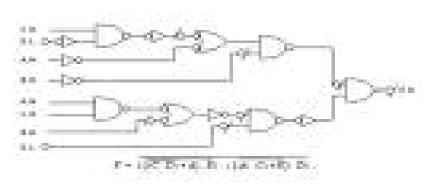
EXAMPLES/APPLICATIONS



Netflix challengeP vs. NP



Circuit modelingLive cell modeling



STATIC MODELS	
DATA:	$\{(u_k, y_k)\}_{k=1}^N$
MODEL:	y = g(u)
QUALITY:	$\sum y_k - g(u_k) ^2$
DYNAMIC M	
DATA:	$\{(u_k, x_k, y_k, x_k^+)\}_{k=1}^N$
D MODEL:	$x^+ = f(x, u), \ y = g(x, u)$
QUALITY:	$\sum y_k - g(ar{x}_k, u_k) ^2$

LINEAR PARAMETERIZATION

$$y_k \approx g(u_k) \quad (k = 1, \dots, \overline{k})$$

where
$$g(u) = \sum_{i=1}^{r} g_i G_i(u)$$

e.g., in kernel methods, $G_i(u) = G(u - u_i)$

(relatively) cheap optimization
 r is not a good complexity measure
 needs regularization, sparsity optimization

RATIONAL PARAMETERIZATION $y_k \approx g(u_k) \quad (k = 1, ..., \bar{k})$

where

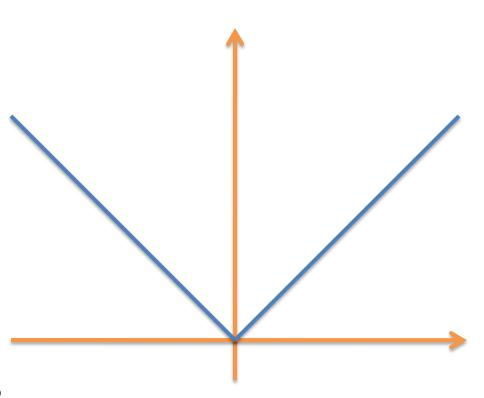
$$g(u) = b(u)/a(u)$$
$$b(u) = \sum b_i B_i(u)$$
$$a(u) = \sum a_i A_i(u)$$

good: better quality per given complexity
 bad: tougher to optimize

 keeping denominator positive
 non-convex setup

EXAMPLE: APPROXIMATING |x|

consider uniform approximation of f(x) = |x| on [-1,1] for polynomials of order n, best quality is O(1/n)• for rational functions of order n, best quality is not worse than $3exp(-\sqrt{n})$



(D. J. Newman, 1963)

ALGEBRAIC PARAMETERIZATION

$$y_k \approx g(u_k) \quad (k = 1, \dots, \overline{k})$$

where
$$g(\cdot)$$
: $h(g(u), u) = 0$
 $h(y, u) = \sum h_i H_i(y, u)$

Linear: h(y, u) = y - f(u)Rational: h(y, u) = a(u)y - b(u)

difference between equation and output errors!

LINEAR PARAMETERIZATION FOR SYSTEMS

$$u_t \longrightarrow \text{MODEL} \rightarrow y_t$$

$$y_t = g(x_t, u_t), \ x_t = \begin{bmatrix} u_{t-m} \\ \vdots \\ u_{t-1} \end{bmatrix}$$

$$g(u, x) = \sum g_i G_i(u, x)$$
e.g. "Volterra Series" (no feedback)
Very inefficient: e.g. $y_t = \sin(y_{t-1} + u_t)$

RATIONAL PARAMETERIZATION (SYSTEMS)

$$u_{t} \longrightarrow \mathsf{MODEL} \rightarrow y_{t}$$

$$h(x_{t}, u_{t}, y_{t}) = 0, \ x_{t} = \begin{bmatrix} y_{t-d} \\ \vdots \\ y_{t-1} \\ u_{t-m} \\ \vdots \\ u_{t-1} \end{bmatrix}$$

$$h(x, u, y) = a(x, u)y - b(x, u)$$

EQUATION ERROR VS. OUTPUT ERROR

Having small equation error does not guarantee that the output error is small,

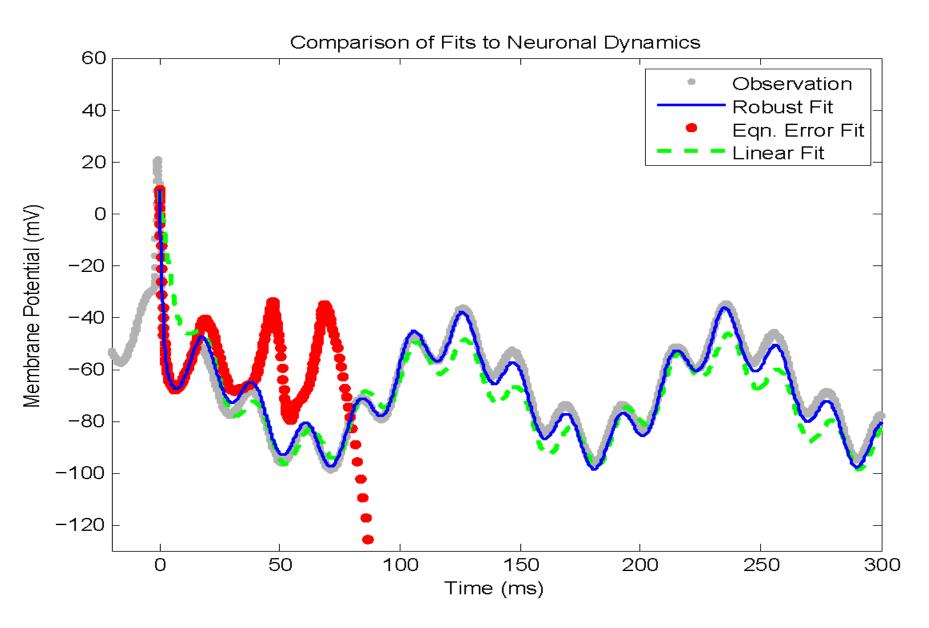
even when

$$h(x, u, y) = y - f(x, u)$$

unless there is no feedback, as in

$$y_t = f(u_t, u_{t-1}, \dots, u_{t-m})$$

EXAMPLE: OUTPUT ERROR RUN-OFF



OUTPUT ERROR MINIMIZATION

- **EXISTING OPTIONS:**
- Iocal optimization
- assume true model is in the class, assume number of samples is "large enough"
- THIS TALK:
- robust identification error :
 - an instantaneous measure of output error
- **Convex upper bound for RIE**
- Convex parameterization of robust models
- minimization of cumulative RIE bounds

DISCRETE TIME STATE SPACE MODELS

MODEL:

 $e(x_{t+1}) = f(x_t, u_t)$ $h(x_t, u_t, y_t) = 0$

WELL-POSEDNESS: $\forall x, u \exists ! v, y :$ e(v) = f(x, u)h(x, u, y) = 0

STABILITY: $u_t \equiv \bar{u}_t \Rightarrow$ $\sum |y_t - \bar{y}_t|^2 < \infty$

OUTPUT ERROR

DATA:

$$(\tilde{x}_k, \tilde{u}_k, \tilde{x}_k^+, \tilde{y}_k)_{k=1}^{\overline{k}}$$

OUTPUT ERROR:

$$\bar{\mathcal{E}} = \sum |\tilde{y}_t - \bar{y}_t|^2$$

where

$$e(\bar{x}_{t+1}) = h(\bar{x}_t, \tilde{u}_t)$$
$$h(\bar{x}_t, \tilde{u}_t, \bar{y}_t) = 0$$
$$\bar{x}_0 = \tilde{x}_0$$

LINEARIZED OUTPUT ERROR

$$\bar{\mathcal{E}}^o = \sum |\delta_t|^2$$

where

$$E(x^{+})\Delta^{+} = F(\tilde{x}, \tilde{u})\Delta + \epsilon_{x}, \ \Delta_{0} = 0$$
$$H_{x}(\tilde{x}, \tilde{u}, \tilde{y})\Delta + H_{y}(\tilde{x}, \tilde{u}, \tilde{y})\delta + \epsilon_{y} = 0$$
$$\epsilon_{x} = f(\tilde{x}, \tilde{u}) - e(\tilde{x}^{+})$$
$$\epsilon_{y} = h(\tilde{x}, \tilde{u}, \tilde{y})$$

ROBUST LINEARIZED OUTPUT ERROR

$$\mathcal{E}_Q^o(x, u, v, y)$$

is the minimal upper bound of $|F\Delta + \epsilon_x|_Q^2 - |E\Delta|_Q^2 + |\delta|^2$

subject to $H_x \Delta + H_y \delta + \epsilon_y = 0$

(LEMMA 1: for Q=Q'>0 $\overline{\mathcal{E}}^o \leq \sum \mathcal{E}^o_O(\tilde{x}_k, \tilde{u}_k, \tilde{x}_k^+, \tilde{y}_k)$

LEMMA 2: models satisfying $\mathcal{E}_Q^o(x, u, v, y) < \infty \quad \forall \ x, u, v, y$ for some Q=Q'>0 are well-posed and stable

CONVEX UPPER BOUND FOR \mathcal{E}_Q^o :

since the conditions $-|E\Delta|_{P^{-1}}^{2} \leq |M\Delta|_{P}^{2} - 2\Delta'M'E\Delta$ $2\delta'(H_{x}\Delta + H_{y}\delta + \epsilon_{y}) = 0$

are always satisfied, the convex upper bound $\widehat{\mathcal{E}}_Q^o(x,u,v,y)$

can be defined as the minimal upper bound of $|F\Delta + \epsilon_x|_Q^2 + |M\Delta|_P^2 - 2\Delta'M'E\Delta$

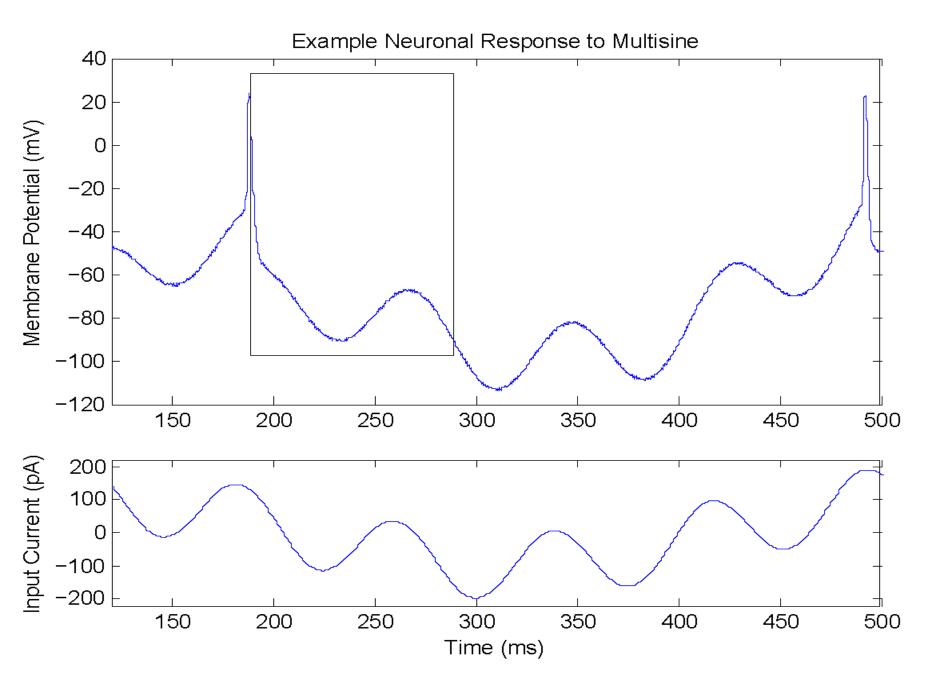
 $+ |\delta|^2 - 2\delta'(H_x\Delta + H_y\delta + \epsilon_y)$

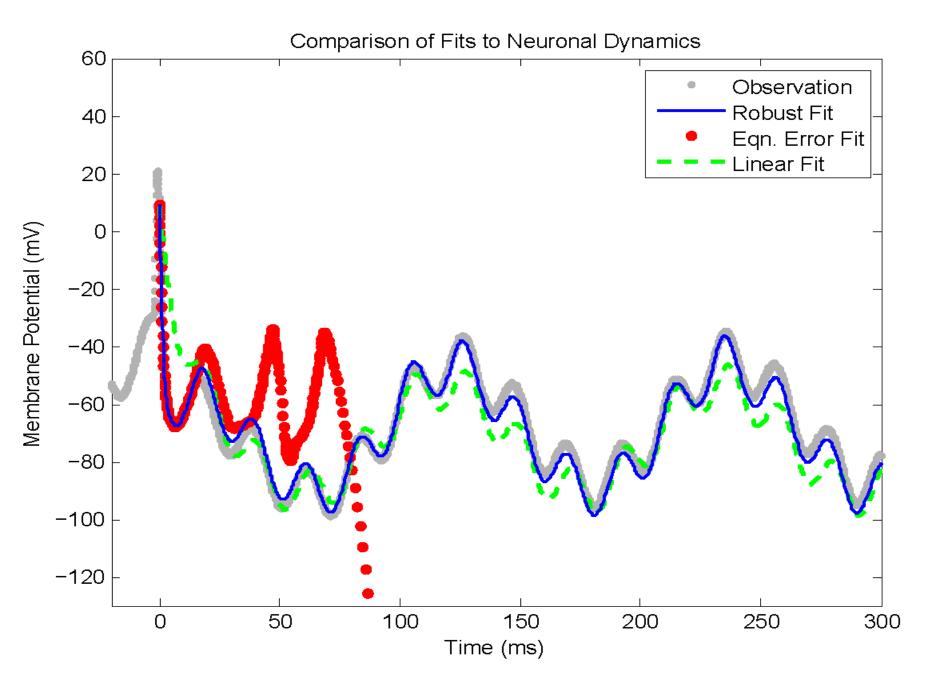
ANALYSIS: THE LINEAR CASE

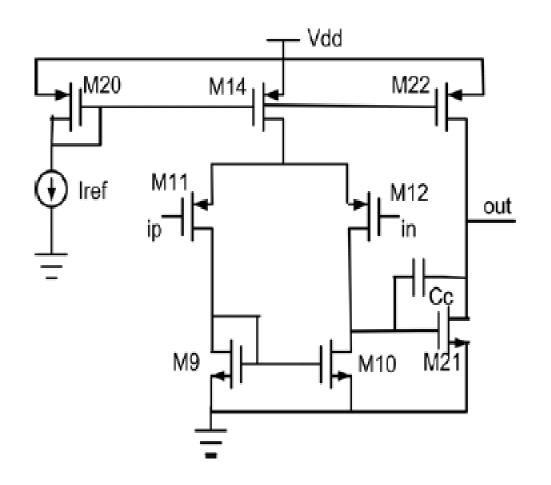
Model: e(v) = Ev, f(x, u) = Fx + Luh(x, u, y) = y - Cx - Du

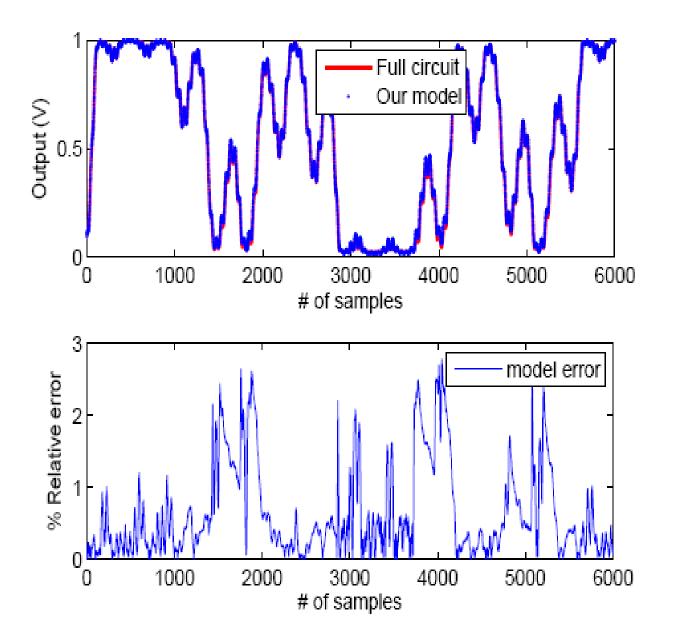
Stability: $F'P^{-1}F + C'C + M'PM < M'E + E'M$

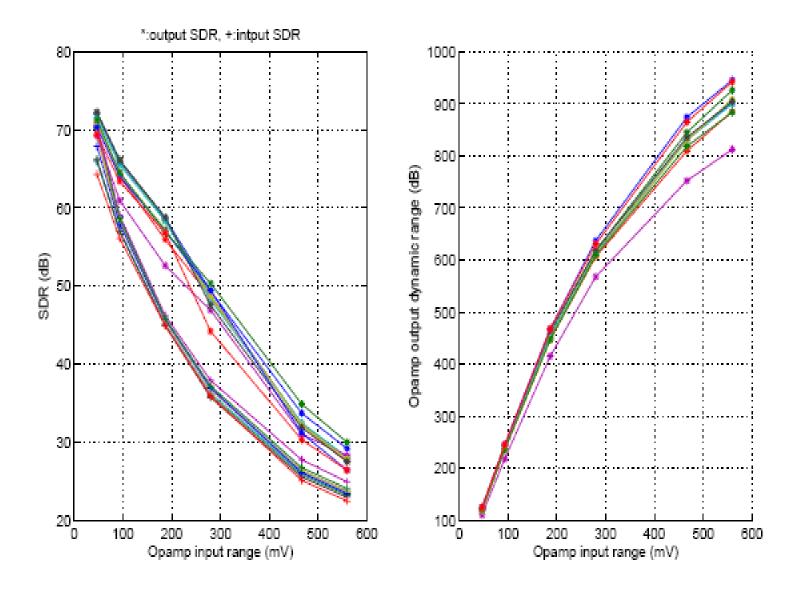
LEMMA: for every C, A (Schur), and M (invertible) there exist P=P'>0,F,E satisfying the stability condition

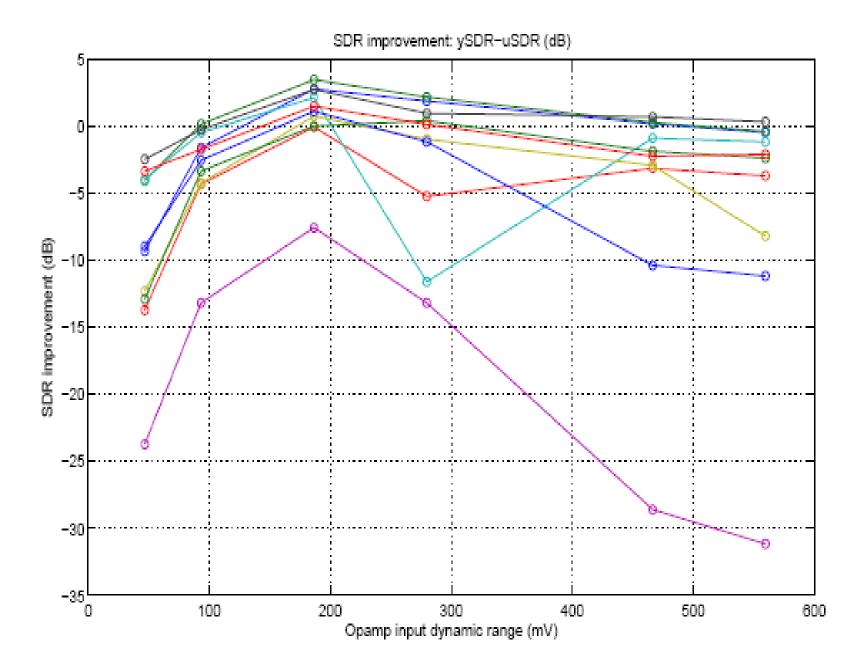












SUMMARY:

□ a framework for handling rationally parameterized models in system id Convex parameterization of large families of systems with established robustness • a toolbox for working with algebraic parameterizations and positive polynomials • excessive conservatism a possible drawback alternative parameterizations are developed