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Consensus and coordination on nonlinear spaces   
(circle, orthogonal group, SE(2), SE(3), ...)
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Classical linear consensus theory

Uniform convergence to             (“consensus:               ”)
is proven under uniform  connectivity / irreducibility 
(Tsitsiklis, Jadbabaie et al., Moreau, ...)

Linear consensus algorithms are linear time-varying systems

where for each t,  A(t) is row stochastic, i.e.

A is nonnegative: 

each row sums to one:  



Convergence analysis and Lyapunov functions

It is known that no common quadratic Lyapunov exists in general.
(See Olshevsky & Tsitsiklis 08 for a discussion)

Tsitsiklis (1986) observed that 

is non increasing along the flow. 

Uniform convergence is established by showing the strict decay of  
over a finite horizon.



Birkhoff     Theorem

Let K a closed  solid cone in X a Banach space, with partial ordering      .

A is positive if A maps         to   

A is monotone if 

Theorem (G. Birkhoff, 1957): 

         Positive linear monotone mappings contract the Hilbert metric in       . 

         The contraction coefficient is

Note: Perron-Frobenius follows from contraction mapping theorem



Birkhoff Theorem and Hilbert metric in the positive orthant
  
             
 

The Hilbert metric is

      

It is a projective metric: 

For A>0,  the diameter is 



Birkhoff   Theorem and Tsitsiklis Lyapunov function

Consequence of Birkhoff result:  for nonnegative linear maps that 
satisfy                    ,  the Lyapunov function

is non-increasing along solutions.

The Hilbert distance to  consensus  is equivalent to Tsitsiklis Lyapunov 
function in log coordinates.

(and captures the invariance property                                 )).

Remark: both are measures of
(Moreau’s Lyapunov function).



Hilbert metric in an arbitrary cone

Closely related metric: Thompson metric



Hilbert metric in the SDP cone

  

      . 

Closely related metric
  



Generalizations of classical consensus theory

1. Linearity is not essential, only homogeneity
(Recent work by Gaubert et al. on generalizations of Perron-Frobenius)

II. Consensus theory generalizes to any cone, 
e.g. the cone of positive semidefinite matrices.

How to define a consensus iteration over the SDP cone ?
What for?



Non-commutative consensus theory

Stochastic maps in non-commutative spaces find applications in 

1.  Control and estimation of open quantum systems

II.  Non-commutative symbolic coding



Stochastic maps: the usual (commutative) case

Probability space:

Stochastic operators map probabilities to probabilities 

Consensus theory vs existence of a stationary distribution
vs graph theoretic interpretation of  irreducibility:
see  Jadbabaie et al.



Stochastic maps: the quantum (non-commutative) case

Probabilities are described by density matrices

Completely positive maps (“quantum channels”) map density matrices to 
density matrices.  They are of the form  

The dual map                                      satisfies 



A non-commutative consensus problem

Repeated interactions of a quantum system give rise to the system

Birkhoff theorem:  the Lyapunov function

 is non-increasing along the iterates of the dual system.

Convergence to a stationary density matrix upon irreducibility conditions.

The dual map                                      satisfies 



Conclusions

Conic geometries are adapted to consensus theory ... 
Quadratic Lyapunov functions are’nt ...

Tsitsiklis Lyapunov function is a measure of contraction of the Hilbert 
metric.

Birkhoff theorem (positive monotone operators contract the Hilbert 
metric) applies to more general cones, e.g. the SDP cone.

Opens the way to a consensus theory in noncommutative spaces,
with a number of possible applications.
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How to bridge the gap between contraction measures 
and the i/o approach to consensus ?


