
Pool strategy of an electricity producer with endogenous formation of clearing prices

Antonio J. Conejo, Carlos Ruiz University of Castilla-La Mancha, Spain, 2011

Contents

- Background and Aim
- Approach
- Model Features
- Model Formulation
 - Deterministic
 - Stochastic
- Examples
- Conclusions

Contents

- Background and Aim
- Approach
- Model Features
- Model Formulation
 - Deterministic
 - Stochastic
- Examples
- Conclusions

Strategic power producer

- Comparatively large number of generating units
- Units distributed throughout the power network

Pool-based electricity market

- Cleared once a day, one-day ahead and on a hourly basis
- DC representation of the network including first and second Kirchhoff laws
- Hourly Locational Marginal Prices (LMPs)

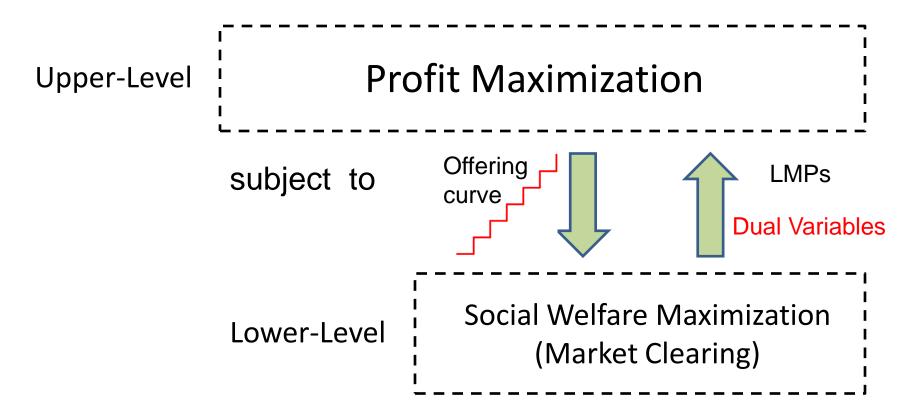
Strategic power producer

Best offering strategy to maximize profit

Pool-based electricity market

- Considering the market: MPEC formulation
- Considering the real-world: Stochastic formulation

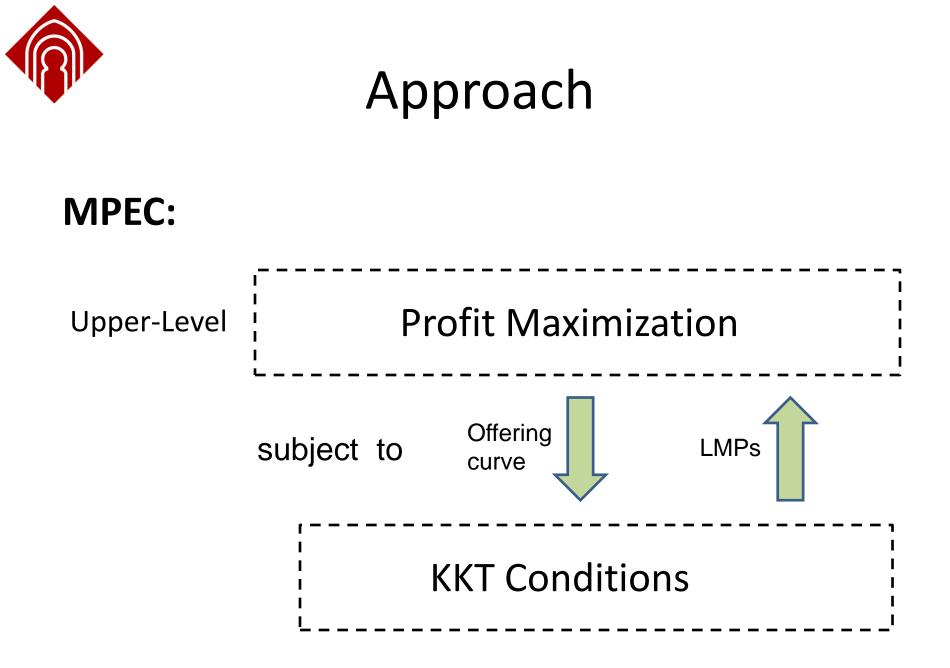
• Stochastic MPEC!


Contents

- Background and Aim
- Approach
- Model Features
- Model Formulation
 - Deterministic
 - Stochastic
- Examples
- Conclusions

Approach

Bilevel model:


Approach

 Bilevel model: Optimization problem constrained by other optimization problem (OPcOP)!

OPcOP

 $\underset{x,y,\lambda,\mu}{\text{minimize}} \quad f^{\mathrm{U}}(x,y,\lambda,\mu)$ x, y, λ, μ subject to $h^{\mathrm{U}}(x, y, \lambda, \mu) = 0$ $g^{\mathrm{U}}(x, y, \lambda, \mu) \le 0,$ $\begin{cases} \min_{y} c(x)^{\mathrm{T}}y \\ \sup_{y} c(x)^{\mathrm{T}}y \\ \operatorname{subject to} \\ D(x)y = e(x) & :\lambda \\ A(x)y \leq b(x) & :\mu, \end{cases}$

minimize $f^{\mathrm{U}}(x, y, \lambda, \mu)$ x, y, λ, μ subject to $h^{\mathrm{U}}(x, y, \lambda, \mu) = 0$ $g^{\mathrm{U}}(x, y, \lambda, \mu) \leq 0,$ $c(x) + A(x)^{\mathrm{T}}\mu - D(x)^{\mathrm{T}}\lambda = 0,$ **MPEC** D(x)y = e(x), $0 \le (b - A(x)y) \perp \mu \ge 0,$ λ : free.

MPEC

$$\begin{split} & \underset{x,y,\lambda,\mu}{\text{minimize}} \quad f^{\text{U}}(x,y,\lambda,\mu) \\ & \text{subject to} \\ & h^{\text{U}}(x,y,\lambda,\mu) = 0, \\ & g^{\text{U}}(x,y,\lambda,\mu) \leq 0, \\ & c(x)^{\text{T}}y = -b(x)^{\text{T}}\mu + e(x)^{\text{T}}\lambda, \\ & c(x)^{\text{T}}y = -b(x)^{\text{T}}\mu + e(x)^{\text{T}}\lambda, \\ & D(x)y = e(x), \\ & A(x)y \leq b(x), \\ & -A(x)^{\text{T}}\mu + D(x)^{\text{T}}\lambda = c(x), \\ & \mu \geq 0, \\ & \lambda \quad : \text{ free.} \end{split}$$

Contents

- Background and Aim
- Approach
- Model Features
- Model Structure
 - Deterministic
 - Stochastic
- Examples
- Conclusions

Features

- 1) Strategic offering for a producer in a pool with endogenous formation of LMPs.
- 2) Uncertainty of demand bids and rival production offers.
- 3) MPEC approach under multi-period, networkconstrained pool clearing.
- 4) MPEC transformed into an equivalent MILP.

Contents

- Background and Aim
- Approach
- Model Features
- Model Formulation
 - Deterministic
 - Stochastic
- Examples
- Conclusions

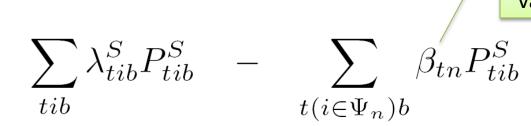
Upper-Level → **Profit** Maximization:

Minimize

Costs - Revenues

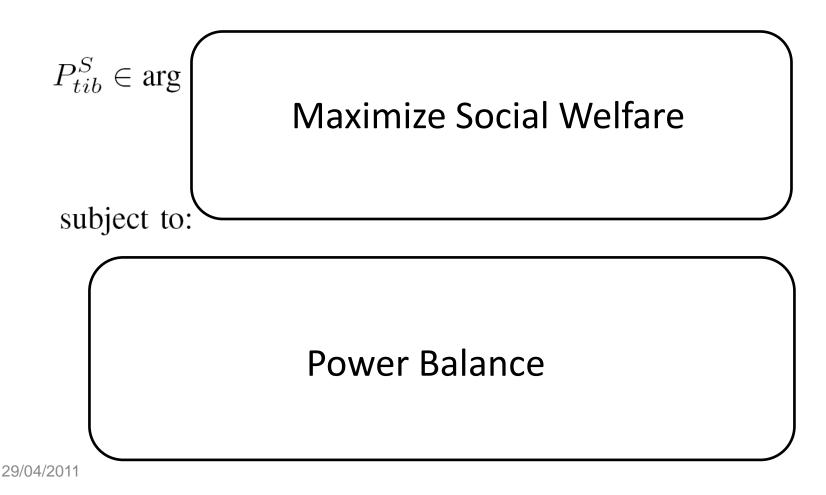
subject to:

Ramping Limits


Price = Balance dual variable

Upper-Level → **Profit** Maximization:

Dual variable



subject to:

$$\begin{split} \sum_{b} P_{(t+1)ib}^{S} &- \sum_{b} P_{tib}^{S} \leq R_{i}^{^{\mathrm{UP}}} \quad \forall t < T, \forall i \\ \sum_{b} P_{tib}^{S} &- \sum_{b} P_{(t+1)ib}^{S} \leq R_{i}^{^{\mathrm{LO}}} \quad \forall t < T, \forall i \\ \beta_{tn} &= \lambda_{tn} \quad \forall t, \forall n \end{split}$$

Lower-Level → Market Clearing

Lower-Level → Market Clearing

$$P_{tib}^{S} \in \arg \left\{ \begin{array}{ll} \underset{P_{tib}^{S}, P_{tjb}^{O}, P_{tdk}^{D}}{\text{Minimize}} & \sum_{tib} \alpha_{tib}^{S} P_{tib}^{S} + \sum_{tjb} \lambda_{tjb}^{O} P_{tjb}^{O} \\ & -\sum_{tdk} \lambda_{tdk}^{D} P_{tdk}^{D} \end{array} \right.$$

subject to:

$$\sum_{(i \in \Psi_n)b} P_{tib}^S + \sum_{(j \in \Psi_n)b} P_{tjb}^O - \sum_{(d \in \Psi_n)k} P_{tdk}^D =$$
$$= \sum_{m \in \Theta_n} B_{nm} (\delta_{tn} - \delta_{tm}) \quad : \lambda_{tn} \quad \forall t, \forall n$$
Price

Lower-Level → Market Clearing

subject to:

Production / Demand Power Limits

Transmission Capacity Limits

Angle Limits

Lower-Level → Market Clearing

subject to:

$$\begin{split} 0 &\leq P_{tib}^{S} \leq P_{tib}^{S^{\max}} : \mu_{tib}^{S^{\min}}, \mu_{tib}^{S^{\max}} \quad \forall t, \forall i, \forall b \\ 0 &\leq P_{tjb}^{O} \leq P_{tjb}^{O^{\max}} : \mu_{tjb}^{O^{\min}}, \mu_{tjb}^{O^{\max}} \quad \forall t, \forall j, \forall b \\ 0 &\leq P_{tdk}^{D} \leq P_{tdk}^{D^{\max}} : \mu_{tdk}^{D^{\min}}, \mu_{tdk}^{D^{\max}} \quad \forall t, \forall d, \forall k \end{split}$$

$$-C_{nm}^{max} \leq B_{nm}(\delta_{tn} - \delta_{tm}) \leq C_{nm}^{max} : \nu_{tnm}^{min}, \nu_{tnm}^{max}$$
$$\forall t, \forall n, \forall m \in \Theta_n$$

$$-\pi \leq \delta_{tn} \leq \pi$$
 : $\xi_{tn}^{\min}, \xi_{tn}^{\max}$ $\forall t, \forall n$

$$\delta_{tn} = 0 \qquad : \xi_t^1 \qquad \forall t, n = 1$$

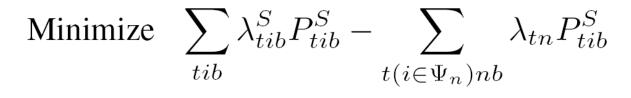
29/04/2011

Lower-Level → Market Clearing → KKT conditions

 $\alpha_{tib}^{S} - \lambda_{tn} + \mu_{tib}^{S^{\max}} - \mu_{tib}^{S^{\min}} = 0 \qquad \forall t, \forall i \in \Psi_n, \forall b$ $\lambda_{tib}^{O} - \lambda_{tn} + \mu_{tib}^{O^{\max}} - \mu_{tib}^{O^{\min}} = 0 \qquad \forall t, \forall j \in \Psi_n, \forall b$ $-\lambda_{tdk}^{D} + \lambda_{tn} + \mu_{tdk}^{D^{\max}} - \mu_{tdk}^{D^{\min}} = 0 \quad \forall t, \forall d \in \Psi_n, \forall k$ $\sum B_{nm}(\lambda_{tn} - \lambda_{tm}) + \sum B_{nm}(\nu_{tnm}^{\max} - \nu_{tmn}^{\max})$ $m \in \Theta_n$ $m \in \Theta_n$ + $\sum B_{nm}(\nu_{tmn}^{\min} - \nu_{tnm}^{\min}) + \xi_{tn}^{\max} - \xi_{tn}^{\min} + (\xi_t^1)_{n=1} = 0 \quad \forall t, \forall n$ $m \in \Theta_n$ $\sum_{ib} P^{S}_{t(i \in \Psi_{n}), b} + \sum_{jb} P^{O}_{t(j \in \Psi_{n})b} - \sum_{dk} P^{D}_{t(d \in \Psi_{n})k} =$ $= \sum B_{nm}(\delta_{tn} - \delta_{tm}) \qquad \forall t, \forall n$ $m \in \Theta_n$ $\delta_{tn} = 0 \qquad \forall t, n = 1$

24

29/04/2011


Lower-Level → Market Clearing → KKT conditions

$$\begin{split} 0 &\leq P_{tib}^{S} \perp \mu_{tib}^{S^{\min}} \geq 0 \quad \forall t, \forall i, \forall b \\ 0 &\leq P_{tjb}^{O} \perp \mu_{tjb}^{O^{\min}} \geq 0 \quad \forall t, \forall j, \forall b \\ 0 &\leq P_{tdk}^{D} \perp \mu_{tdk}^{D^{\min}} \geq 0 \quad \forall t, \forall d, \forall k \\ 0 &\leq P_{tib}^{S^{\max}} - P_{tib}^{S} \perp \mu_{tib}^{S^{\max}} \geq 0 \quad \forall t, \forall i, \forall b \\ 0 &\leq P_{tjb}^{O^{\max}} - P_{tjb}^{O} \perp \mu_{tjb}^{O^{\max}} \geq 0 \quad \forall t, \forall j, \forall b \\ 0 &\leq P_{tdk}^{D^{\max}} - P_{tdk}^{D} \perp \mu_{tdk}^{D^{\max}} \geq 0 \quad \forall t, \forall d, \forall k \\ 0 &\leq P_{tdk}^{\max} - P_{tdk}^{D} \perp \mu_{tdk}^{D^{\max}} \geq 0 \quad \forall t, \forall d, \forall k \\ 0 &\leq C_{nm}^{\max} + B_{nm}(\delta_{tn} - \delta_{tm}) \perp \nu_{tnm}^{\min} \geq 0 \\ &\quad \forall t, \forall n, \forall m \in \Theta_n \\ 0 &\leq C_{nm}^{\max} - B_{nm}(\delta_{tn} - \delta_{tm}) \perp \nu_{tnm}^{\max} \geq 0 \\ &\quad \forall t, \forall n, \forall m \in \Theta_n \\ 0 &\leq \pi - \delta_{tn} \perp \xi_{tn}^{\max} \geq 0 \quad \forall t, \forall n \\ 0 &\leq \pi + \delta_{tn} \perp \xi_{tn}^{\min} \geq 0 \quad \forall t, \forall n \end{split}$$

29/04/2011

MPEC model

subject to:

$$\sum_{b} P_{(t+1)ib}^{S} - \sum_{b} P_{tib}^{S} \leq R_{i}^{UP} \qquad \forall t, \forall i$$
$$\sum_{b} P_{tib}^{S} - \sum_{b} P_{(t+1)ib}^{S} \leq R_{i}^{LO} \qquad \forall t, \forall i$$

KKT Lower-Level

Linearizations

The MPEC includes the following non-linearities:

1) The complementarity conditions ($0 \le a \perp b \ge 0$). 2) The term $\lambda_{tn} P_{tib}^S$ in the objective function.

Linearizations -> Complementarity Conditions

Fortuny-Amat (transformation

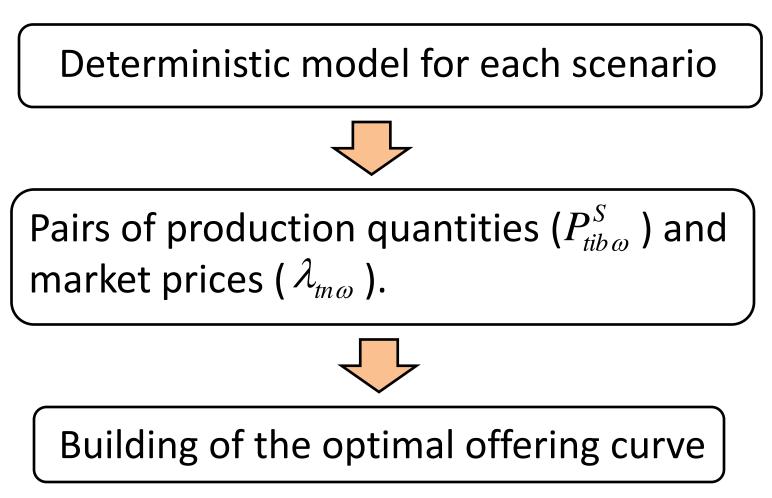
M Large enough constant (but not too large)

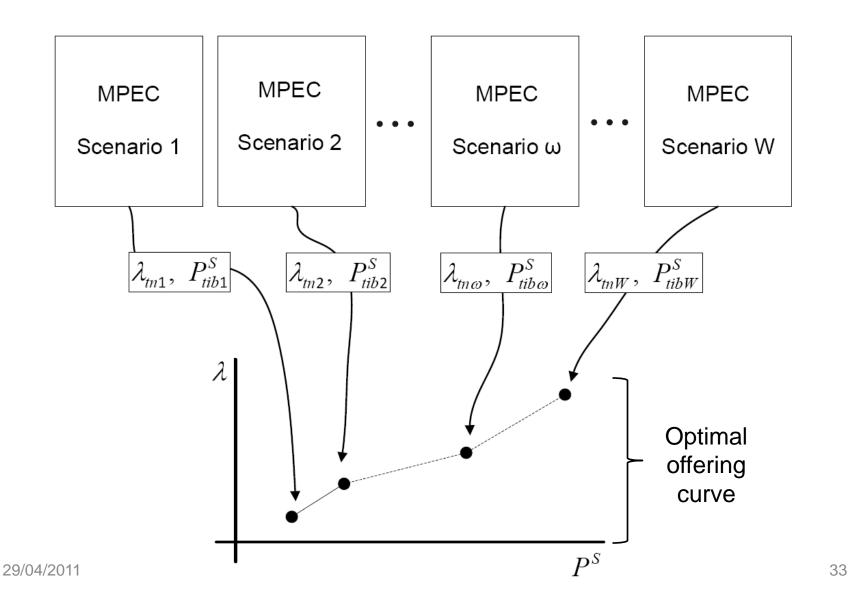
Linearizations
$$\rightarrow$$
 Term: $\lambda_{tn} P_{tib}^S$

Based on the strong duality theorem and some of the KKT equalities

$$X = \sum_{t(i \in \Psi_n)b} \lambda_{tn} P_{tib}^S = -\sum_{tjb} \lambda_{tjb}^O P_{tjb}^O + \sum_{tdh} \lambda_{tdk}^D P_{tdk}^D$$
$$-\sum_{tjb} \mu_{tjb}^{O^{\max}} P_{tjb}^{O^{\max}} - \sum_{tdk} \mu_{tdk}^{D^{\max}} P_{tdk}^{D^{\max}} - \sum_{tn(m \in \Theta_n)} \nu_{tnm}^{\min} C_{nm}^{\max}$$
$$-\sum_{tn(m \in \Theta_n)} \nu_{tnm}^{\max} C_{nm}^{\max} - \sum_{tn} \xi_{tn}^{\max} \pi - \sum_{tn} \xi_{tn}^{\min} \pi$$

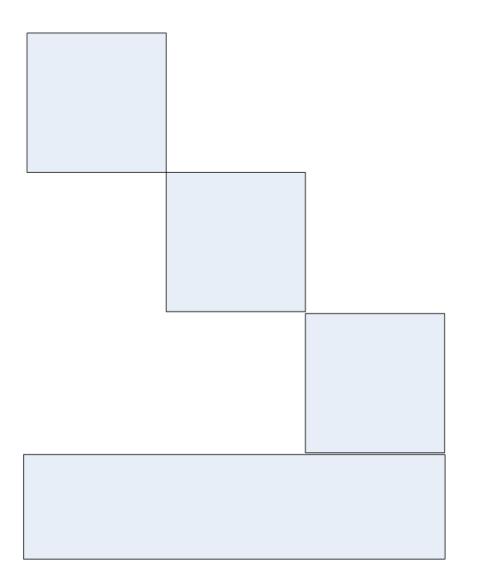
Contents


- Background and Aim
- Approach
- Model Features
- Model Formulation
 - Deterministic
 - Stochastic
- Examples
- Conclusions


Uncertainty incorporated using a set of scenarios modeling different realizations of:

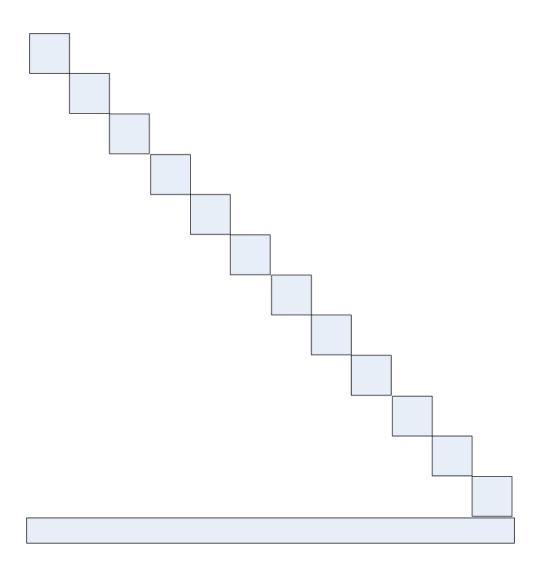
- Consumers' bids
- Rival producers' offers

To ensure that the final offering curves are increasing in price some additional constraints are needed:


$$\begin{split} \lambda_{tnw} - \lambda_{tnw'} &\leq x_{tiww'} M^x \quad \forall t, \forall i \in \Psi_n, \forall w, \forall w' > w \\ \lambda_{tnw} - \lambda_{tnw'} &\geq (x_{tiww'} - 1) M^x \quad \forall t, \forall i \in \Psi_n, \forall w, \forall w' > w \\ \sum_i P_{tibw}^S - \sum_i P_{tibw'}^S &\leq y_{tiww'} M^y \quad \forall t, \forall i, \forall w, \forall w' > w \\ \sum_b P_{tibw}^S - \sum_b P_{tibw'}^S &\geq (y_{tiww'} - 1) M^y \; \forall t, \forall i, \forall w, \forall w' > w \\ x_{tiww'} + y_{tiww'} = 2z_{tiww'} \quad \forall t, \forall i, \forall w, \forall w' > w \\ x_{tiww'}, y_{tiww'}, z_{tiww'} \in \{0, 1\} \end{split}$$

These constraints link the individual problems increasing the computational complexity of the model.

4/29/2011

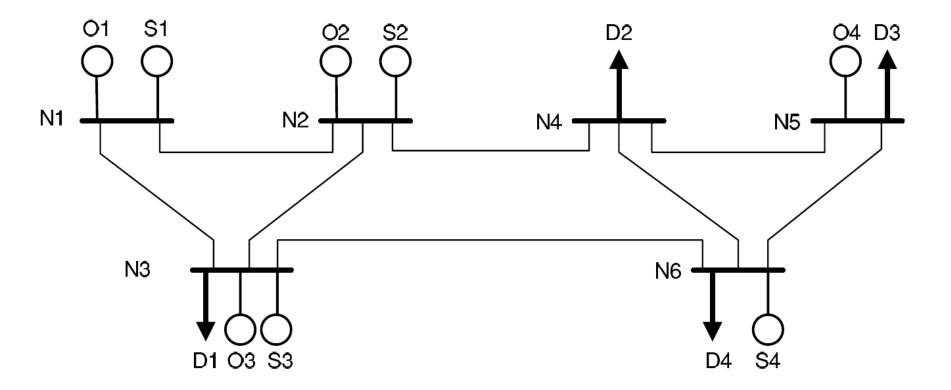


Stochastic Model Math Structure

Stochastic Model Math Structure

Stochastic Model Math Structure

- 1. Direct solution: CPLEX, XPRESS
- 2. Decomposition procedures (Lagrangian Relaxation)



Contents

- Background and Aim
- Approach
- Model Features
- Model Formulation
 - Deterministic
 - Stochastic
- Examples
- Conclusions

Six-bus test system→ electricity network

Six-bus test system→ demand curve

DEMAND BLOCKS [GWH] FOR EACH PERIOD OF TIME

[€/MWh]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
25.000												0.9	0.9					0.9	0.9	0.9	0.9			
24.968											0.9	0.025	0.025	0.9				0.025	0.025	0.025	0.025	0.9		
22.628														0.025						0.025				
20.876														0.025						0.025				
20.606														0.025				0.025	0.025	0.025	0.025			
20.378											0.025			0.025			0.025					0.025		
19.922										0.025						0.025								
19.532										0.025						0.025							0.9	
19.232										0.025						0.025							0.025	
18.932										0.025					0.025	0.025							0.025	
18.806									0.025														0.025	
18.344									0.025														0.025	
18.152									0.025															
17.940								0.9																0.9
17.612								0.025																0.025
17.430	0.9							0.025																0.025
	0.025							0.025																0.025
	0.025			0.9			0.025	0.025																0.025
	0.025						0.025																	
	0.025																							
16.380			1		0.025																			
16.320			0.025		0.025																			
16.130					0.025	0.025																		

Six-bus test system→ generating units

Unit Type	oil	oil	hydro	coal	oil	coal	oil	coal	nuclear	_	
P[MW]	12	20	50	76	100	155	197	350	400	-	
$P_1^{\max}[MWh]$	2.4	15.8	15	15.2	25	54.25	68.95	140	100	$\begin{array}{cccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	D2 O4 D3
P_2^{\max} [MWh]	3.4	0.2	15	22.8	25	38.75	49.25	97.5	100		
P_3^{\max} [MWh]	3.6	3.8	10	22.8	20	31	39.4	52.5	120		
P_4^{\max} [MWh]	2.4	0.2	10	15.2	20	31	39.4	70	80		
$\lambda_1^{S/O}$ [€/MWh]	23.41	11.09	0	11.46	18.60	9.92	10.08	19.20	5.31	- N3 -	N6
$\lambda_2^{S/O}$ [€/MWh]	23.78	11.42	0	11.96	20.03	10.25	10.66	20.32	5.38	- ↓	\downarrow
$\lambda_3^{S/O}$ [€/MWh]	26.84	16.06	0	13.89	21.67	10.68	11.09	21.22	5.53	D1 03 53	D4 S4
$\lambda_4^{S/O}$ [€/MWh]	30.40	16.24	0	15.97	22.72	11.26	11.72	22.13	5.66	-	
$R^{\rm UP}[\rm MW]$	30	90	-	60	210	90	90	120	600	-	
$R^{LO}[MW]$	30	90	-	60	210	90	90	120	600	-	
										-	

TYPE AND DATA FOR THE GENERATING UNITS

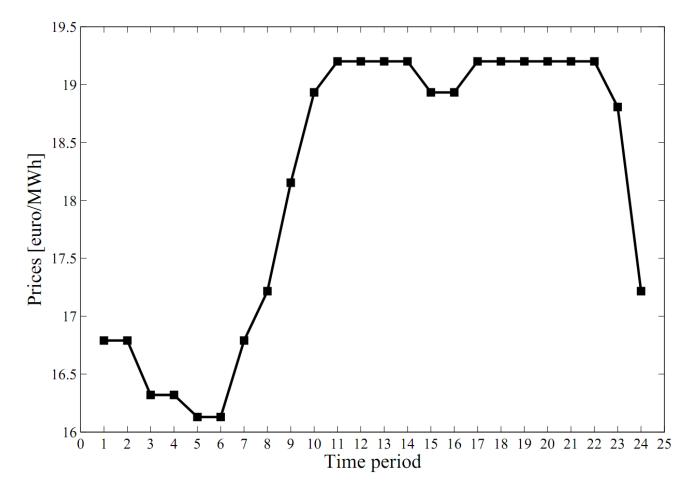
LOCATION AND TYPE OF UNITS

S	Strategic	units	Other units				
i	Туре	Bus	j	Туре	Bus		
1	155	1	1	350	1		
2	100	2	2	197	2		
3	155	3	3	197	3		
4	197	6	4	155	5		

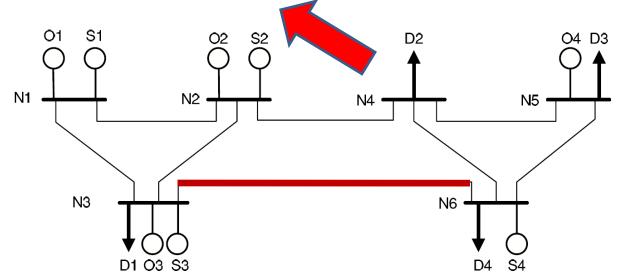
LOCATION AND DISTRIBUTION OF THE DEMAND

d	Bus	Factor (%)
1	3	19
2	4	27
3	5	27
4	6	27

Six-bus test system→ uncongested network results

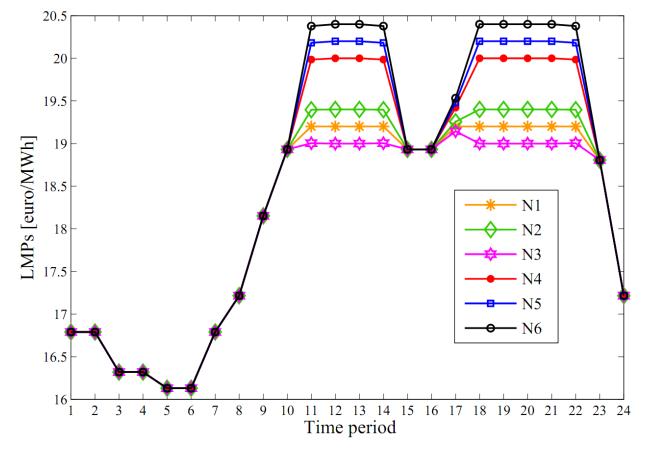

Strategic Offer									
S1 S2 S3 S4 Total									
Production [MWh]	3501.8	0	3464.8	3782.4	10749				
Profit [€]	27202	0	27038	28861	83101				
Marginal-Cost Offer									
Production [MWh]	3720	0	3720	3805.2	11245.2				
Profit [€]	4826.7	0	4826.7	4562.5	14216				

The maximum power flow through lines 2-4, 3-6 and 4-6 are 269.62, 229.44 and 39.6933 MW respectively


Six-bus test system→ uncongested network results

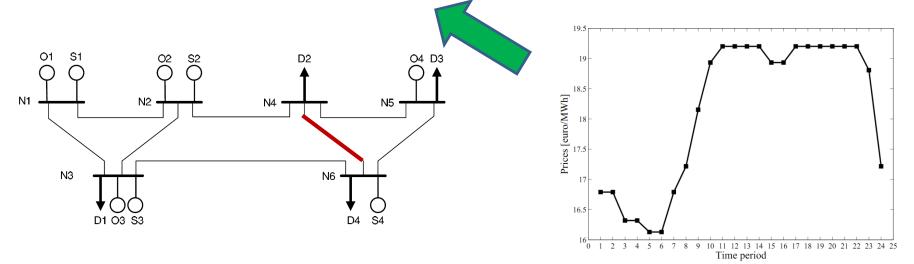
Six-bus test system→ congested network results

Capacity of line 3-6 limited to 230 MW:



	S1	S 2	S3	S4	Total
Production [MWh]	3477.9	0	3498	3773.1	10749
Profit [€]	2691	0	27068	30519	84574

Six-bus test system→ congested network results


Capacity of line 3-6 limited to 230 MW:

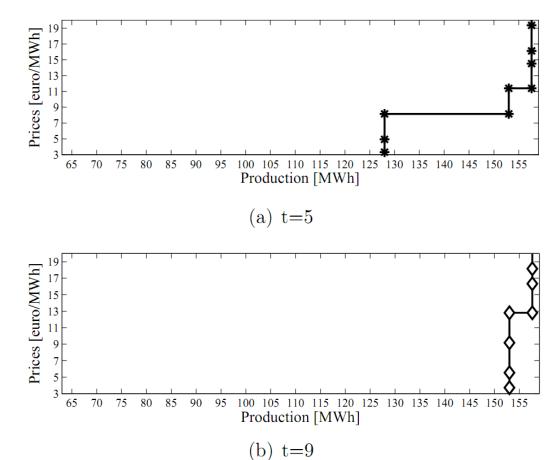
Six-bus test system→ congested network results

Capacity of line 4-6 limited to 39 MW:

	S 1	S 2	S 3	S4	Total
Production [MWh]	3610.3	0	3356.3	3782.4	10749
Profit [€]	28027	0	26214	28861	83101

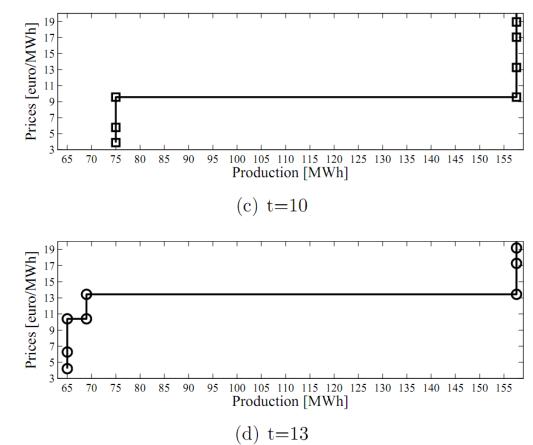
Six-bus test system→ stochastic model

- Uncongested network case
- 8 equally probable scenarios
- They differ on the rival producer offers $(\lambda_{ijb\omega}^{O})$ and on the consumer bids $(\lambda_{idk\omega}^{D})$
- Selected to obtain a wide range of prices

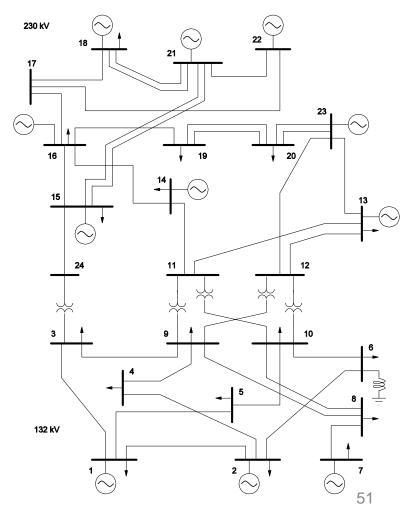

Six-bus test system→ stochastic model results

Strategic Offer										
	S 1	S2	S3	S4	Total					
E. Production [MWh]	3088.3	0	3008.6	3326.7	9423.6					
E. Profit [€]	16354	0	15657	16615	48626					
	Marginal-Cost Offer									
E. Production [MWh]	2331.4	0	2437.6	2715.2	7484.2					
E. Profit [€]	6430.4	0	6430.4	7281.1	20141.9					

Six-bus test system→ stochastic model results

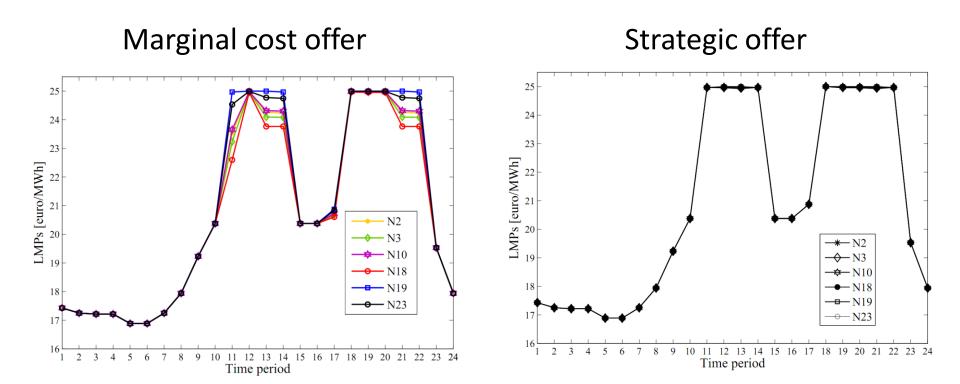

Offering curves for strategic generator 1

Six-bus test system→ stochastic model results


Offering curves for strategic generator 1

IEEE One Area Reliability Test System

- 24 Nodes
- 8 strategic units
- 24 non-strategic units
- 17 consumers
- 24 hours



IEEE One Area Reliability Test System → Results

	Strategic Offer									
	S1	S2	S3	S4	S5	S6	S7	Total		
Production [MWh]	36.48	18.24	8.9416	47.28	31.01	96	37.2	281.13		
Profit [€]	27929	13965	3287.3	47959	38689	148120	38983	318932.3		
	Marginal-Cost Offer									
Production [MWh]	36.48	18.24	10.6	47.28	37.2	96	37.2	283		
Profit [€]	27245	13625	3449.3	47296	37815	145170	38773	313373		

IEEE One Area Reliability Test System → Results

Computational issues

 Model solved using CPLEX 11.0.1 under GAMS on a Sun Fire X4600 M2 with 4 processors at 2.60 GHz and 32 GB of RAM.

Model	6-bus uncongested	6-bus congested	6-bus stochastic	IEEE RTS
CPU Time [s]	2.91	5.82	204.77	449.33

Contents

- Background and Aim
- Approach
- Model Features
- Model Formulation
 - Deterministic
 - Stochastic
- Examples
- Conclusions

Conclusions

- Procedure to derive strategic offers for a power producer in a network constrained pool market.
 - LMPs are endogenously generated: MPEC approach.
 - Uncertainty is taken into account.
 - Resulting MILP problem.
- Exercising market power results in higher profit and lower production.
- Network congestion can be used to further increase profit.

Thanks for your attention!

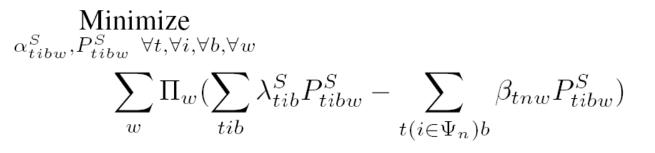
http://www.uclm.es/area/gsee/web/antonio.htm

Appendix A Computational Issues

- Model has been solved using CPLEX 11.0.1 under GAMS on a Sun Fire X4600 M2 with 4 processors at 2.60 GHz and 32 GB of RAM.
- The computational times are highly dependent on the values of the linearization constants *M*.

Model	6-bus uncongested	6-bus congested	6-bus stochastic	IEEE RTS
CPU Time [s]	2.91	5.82	204.77	449.33

Appendix A Computational Issues


Heuristic to determine the value of *M*:

- 1. Solve a (single-level) market clearing considering that all the producers offer at marginal cost.
- 2. Obtain the marginal value of each relevant constraint.
- 3. Compute the value of each relevant constant as:

$$M = (\text{dual variable value} + 1) \times 100$$

Appendix B Stochastic model

subject to:

$$\begin{split} \sum_{b} P^{S}_{(t+1)ibw} &- \sum_{b} P^{S}_{tibw} \leq R^{\text{UP}}_{i} \quad \forall t < T, \forall i, \forall w \\ \sum_{b} P^{S}_{tibw} &- \sum_{b} P^{S}_{(t+1)ibw} \leq R^{\text{LO}}_{i} \quad \forall t < T, \forall i, \forall w \\ \beta_{tnw} &= \lambda_{tnw} \quad \forall t, \forall n, \forall w \end{split}$$

Appendix B Stochastic model

$$P_{tibw}^{S} \in \arg \left\{ \begin{array}{l} \underset{P_{tibw}^{S}, P_{tjbw}^{O}, P_{tdkw}^{D}}{\text{Minimize}} & \sum_{tib} \alpha_{tibw}^{S} P_{tibw}^{S} + \\ & + \sum_{tjb} \lambda_{tjbw}^{O} P_{tjbw}^{O} - \sum_{tdk} \lambda_{tdkw}^{D} P_{tdkw}^{D} \end{array} \right.$$

subject to:

$$\begin{split} &\sum_{(i\in\Psi_n)b} P_{tibw}^S + \sum_{(j\in\Psi_n)b} P_{tjbw}^O - \sum_{(d\in\Psi_n)k} P_{tdkw}^D = \\ &= \sum_{m\in\Theta_n} B_{nm} (\delta_{tnw} - \delta_{tmw}) \quad : \lambda_{tnw} \quad \forall t, \forall n \\ &0 \leq P_{tibw}^S \leq P_{tib}^{S^{\max}} \quad : \mu_{tibw}^{S^{\min}}, \mu_{tibw}^{S^{\max}} \quad \forall t, \forall i, \forall b \\ &0 \leq P_{tjbw}^O \leq P_{tjbw}^{O^{\max}} \quad : \mu_{tjbw}^{O^{\min}}, \mu_{tjbw}^{O^{\max}} \quad \forall t, \forall j, \forall b \\ &0 \leq P_{tdkw}^D \leq P_{tdkw}^{D^{\max}} \quad : \mu_{tdkw}^{D^{\min}}, \mu_{tdkw}^{D^{\max}} \quad \forall t, \forall d, \forall k \end{split}$$

Appendix B Stochastic model

$$-C_{nm}^{max} \leq B_{nm}(\delta_{tnw} - \delta_{tmw}) \leq C_{nm}^{max}$$

$$: \nu_{tnmw}^{\min}, \nu_{tnmw}^{\max} \quad \forall t, \forall n, \forall m \in \Theta_n$$

$$-\pi \leq \delta_{tnw} \leq \pi \qquad : \xi_{tnw}^{\min}, \xi_{tnw}^{\max} \quad \forall t, \forall n$$

$$\delta_{tnw} = 0 \qquad : \xi_{tw}^{1} \qquad \forall t, n = 1$$

$$\forall w$$

$$\lambda_{tnw} - \lambda_{tnw'} \leq x_{tiww'} M^x \quad \forall t, \forall i \in \Psi_n, \forall w, \forall w' > w$$

$$\lambda_{tnw} - \lambda_{tnw'} \geq (x_{tiww'} - 1) M^x \quad \forall t, \forall i \in \Psi_n, \forall w, \forall w' > w$$

$$\sum_{b} P_{tibw}^{S} - \sum_{b} P_{tibw'}^{S} \leq y_{tiww'} M^y \quad \forall t, \forall i, \forall w, \forall w' > w$$

$$\sum_{b} P_{tibw}^{S} - \sum_{b} P_{tibw'}^{S} \ge (y_{tiww'} - 1)M^{y} \; \forall t, \forall i, \forall w, \forall w' > w$$

$$x_{tiww'} + y_{tiww'} = 2z_{tiww'} \quad \forall t, \forall i, \forall w, \forall w' > w$$

$$x_{tiww'}, y_{tiww'}, z_{tiww'} \in \{0, 1\}$$

62