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Content  

• Energy Hub 
 
- Multi energy-carrier systems 
 

• Power Node 
 
- Incorporation of fluctuating power sources 
- Incorporation of demand side participation 
- Incorporation of storage 
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The Energy Hub 

L =  Loads (Output) 
 
M  = Output side storage flows 
 
C  = Coupling matrix 
 
P  = Input power flows 
 
Q = Input storage flows 
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Hub Equations and Results 
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Applications (so far) 

• Long term energy planning of the city of Bern 
 

• Energy planning of several Swiss municipalities 
 

• Analysis of e-mobility 
 

• Energy/Exergy analysis of city of Zürich  
 

• … 
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Status Quo in Power Systems Modelling 
Traditional power system modeling is “fractional“: 

 

 Separate models are used for capturing information of 
 Transmission & distribution grid (topology, voltage & frequency 

dynamics, voltage & line limits) 

 Power generation (generator dynamics, ramp constraints, wind and 
PV in-feed predictions) 

 Load models (dynamics, load demand predictions) 

 Storage models (capacity, storage levels, dynamics) 
 

 Modelled interaction between individual power system units 
and grid does not necessarily capture all relevant aspects 
 

 No interaction with other energy carriers modeled (cf Energy Hub) 
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 Example: optimal power dispatch simulations do consider units 
that inject or absorb power from the grid. 
 Which of these units are storages (energy-constrained)? 

 Which of these units provide fluctuating power in-feed? 

 What controllability (full / partial / none) does the operator 
have over fluctuating generation and demand processes? 
 

 
 

Status Quo in Power Systems Modelling 
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Motivation for Power Nodes Modeling Framework 
 Create unified framework for modeling power system units 

(incl. relevant operation constraints, power supply and demand 
processes and the controllability) 
 Diverse storage units (battery, pumped hydro, …) 

 Diverse generation units (fully dispatchable conventional 
generators, fluctuating in-feed of wind turbines and PV) 

 Diverse load units (conventional, interruptible, thermal, ...) 
 

 Operation constraints: ramp rates, storage capacity, current 
storage level (SOC) 

 Operation controllability over underlying process (=“flexibility“): 
fully controllable, curtailable / sheddable, non-controllable 
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The Power Nodes Framework 
 Modeling of three domains and their interactions 
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One Power Node 
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One Power Node 

iiigenloadloadii vwuuxC
iigenii
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One Power Node (including constraints) 

 
 

 Power constraints defined by: min/max power, ramp rates, storage capacity 
 Operation flexibility defined by: shedding term wi, storage term Ci xi , ξi 
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Power Node without storage (e.g. non-controllable load) 
 
 

 
 
 
 
 
 
 

 Power node equation degenerates to  
 algebraic equality constraint (for classical load: ugen,i = 0) 
 Power node’s  power in-feed / out-feed is 

 Partially controllable, if shedding term adjustable (wi (k) > 0) 

 Non-controllable, if shedding term is zero (wi (k) = 0) 
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Variety of Power Node modelling definitions 

Load 
 
 
Gener- 
ation 
 
 
 
Storage 
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Non-Controllable Local Load 

PV with local storage unit, no RES feed-in tariff 

Power Node Modelling Examples 

Gridgen,u

Gridload,u

PVgen,u

Batload,u
Batgen,u

NCLload,u

CLgen,u

          PV Panel 

          Battery storage 

         Controllable Local Load 

PVgen,PVgen,
-1

PVgen, ξη =u

Batgen,
1

Batgen,Batload,Batload,BatBat uuxC −−= ηη

CL CL load,CL load,CL CL CL,0 CL( )C x u a x xη ζ= − − +�

load,NCL load,NCL load,NCLuη ξ= −

 
Power Grid  

 
 

(modelled as a slack 
power node) 

GridGridload,Gridgen, ξ=−uu



ETH Power Systems Laboratory 18 

PV with local storage unit, RES feed-in tariff 

Power Node Modelling Examples 

PV Panel 

          Battery storage 

         Non-Controllable Local Load 

         Controllable Thermal Load 

RESGrid,load,u

Batload,u

Batgen,u

CLload,u

PVgen,u

Gridload,u

Gridgen,u

NCLload,u

12P
Node 1 

Node 2 
 

Power Grid  
 
 
 

(additional variable 
for FIT energy) 

PVgen,PVgen,
-1

PVgen, ξη =u

Batgen,
1

Batgen,Batload,Batload,BatBat uuxC −−= ηη

GridRESGrid,load,

Gridload,Gridgen,

ξ=−

−

u
uu

(subject to RES FIT) 

CL CL load,CL load,CL CL CL,0 CL( )C x u a x xη ζ= − − +�

load,NCL load,NCL load,NCLuη ξ= −
This enables the modelling of 
differentiated feed-in tariffs 
incl. options for local PV 
energy usage (e.g. Germany). 
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Joint Provision of Load Frequency Control 

Power Node Modelling Examples 

        Battery storage 

Controllable Thermal Load 

Batload,u∆

Batgen,u∆

CLload,u∆
LFCload,u∆

       Dispatchable Generator 

CGgen,u∆

LFCload,CLload,Batload,CGgen,Batgen, uuuuu ∆=∆−∆−∆+∆
Power Balance: 

Batgen,
1

Batgen,Batload,Batload,BatBat uuxC ∆−∆=∆ −ηη

Secondary  
Frequency  
Controller 

CL CL load,CL load,CL CL CL,0 CL( )C x u a x xη ζ∆ = ∆ − ∆ −∆ + ∆�

CGgen,CGgen,
-1

CGgen, ξη ∆=∆u

LFCLFCLFCload,
ˆ YPu ⋅=∆

LFCY

LFCP̂

: control signal [-100%, +100%] 
 
: offered control band [MW] 
 
 

Convenient representation: 
Control signal modelled as 

a load to be served 
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Demand response (driven by dynamic electricity tariff) 
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Power Node Modelling Examples 
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Power Node Modeling Example: 
Predictive power dispatch 

 Conventional generation unit [6] 
 Conventional (uncontrolled) load [1] + load predictions 

 Pumped-hydro storage units [4+5] and flexible loads (DSM) [7] 

 Wind/PV units (curtailable) [2-3] + Wind/PV power in-feed predictions 
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Power Node Modeling Example: 
Predictive power dispatch 

22 
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 Optimal predictive power dispatch (Germany) 
 Tpred. = 72h, Tupd. = 4h, Tsample=15min. 
 Simulation Period: May 2010 (30% Wind, 20% PV) – Calc < 4min. 
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 Optimal predictive power dispatch (Germany, high PV) 
 Tpred. = 72h, Tupd. = 4h, Tsample=15min. 
 Simulation Period: May 2010 (30% Wind, 50% PV, no DSM)  
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Power Nodes and Energy Hubs 
 Partial transformation between Power Nodes and 

Energy Hubs is possible 
 Converter: natural gas → electricity (uload = 0, Mβ = 0) 
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 Goal is to better evaluate performance of power system 
operation and to improve performance 
 

 Storage utilisation (What is its best use?) 
 Integrating fluctuating power in-feed 
 Integrating demand-side management (DSM) 
 Reduce forced ramping of conventional generators for 

load following and balancing of fluctuating power in-feed 
 Examples of performance criteria 
 power system operation cost 
 curtailment of RES in-feed 
 Power system CO2 emissions 

 
 

Goals of Power Node Approach 
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