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Motivation

Motivation

Current paradigm:
Load is an exogenous input.
Generation tracks fluctuations.

This will not work when renewable generation is a
significant proportion of total load.

Ramp rate limits on generators.
Need excessive amount of reserve, which is expensive.

Ubiquitous communications facilitates control of highly
distributed loads.
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Motivation

Hierarchical control structure
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Motivation

Plug-in electric vehicles

Charging control strategies will be vitally important for
ensuring large-scale adoption of plug-in EVs does not
cause generation scheduling problems.
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Motivation

Time-based charging strategy
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Motivation

Price-based charging strategy
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Model

Dynamics and notation

Individual SOC dynamics

xn
t+1 = xn

t +
αn

βn un
t , i = 0, ...,T − 1

N Size of PEV population
[0,T ] Charging interval
βn Battery size of PEV n
un

t ≥ 0 Charging rate for PEV n
αn Charging efficiency of PEV n
xn

t State of charge (SOC) of PEV n at time t
xn

0 Initial SOC value of PEV n
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Model

Large populations

Assume N →∞.
Total electricity generating capacity, C/N = c.
Total non-PEV demand at time t , Dt/N = dt .

Electricity price function

p(·) ≡ p
(Dt +

∑N
n=1 un

t
C

)
= p

(dt + avg(ut)

c

)
.

where avg(ut) , 1
N
∑N

n=1 un
t .

Define
rt ≡

dt + avg(ut)

c
.
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Game-based decentralized PEV charging controls

Individual costs

Agent cost function

Jn(u) ,
T−1∑
t=0

p(rt)un
t

Individual charging control problem

min
un

Jn(un;u−n),

subject to un
t ≥ 0, and xn

T = 1.

u∗ is a Nash equilibrium (NE) iff

Jn(un,∗;u−n,∗) ≤ Jn(un;u−n,∗),

for all un and all n.
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Game-based decentralized PEV charging controls

Nash equilibrium

Main result: The desired valley-filling strategy is given by the
unique Nash equilibrium (as N approaches infinity).
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Decentralized mechanism for obtaining the Nash equilibrium

Decentralized update mechanism

The following charging negotiation procedure takes place
sometime prior to the actual charging interval.

1 The utility broadcasts base demand d to PEVs.
2 Each PEV proposes its optimal strategy with respect to a

common aggregate PEV demand broadcast by the utility.
3 The utility collects all the individual strategies proposed in

(2), and updates the aggregate PEV demand accordingly.
This updated aggregate demand is rebroadcast to all
PEVs.

4 Repeat (2) and (3) until the optimal strategies proposed by
the PEVs no longer change.
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Decentralized mechanism for obtaining the Nash equilibrium

Non-convergence
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Decentralized mechanism for obtaining the Nash equilibrium

Modified (tracking) cost function

To avoid oscillations, we introduce a tracking function:

Jn(u) ,
T−1∑
t=0

{
p(rt)un

t + δ
(
un

t − avg(ut)
)2
}

with tracking parameter δ > 0.
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Decentralized mechanism for obtaining the Nash equilibrium

Theorem
The collection of charging controls u ≡ {un;n <∞} is a Nash
equilibrium if:

1 Every un is a local control minimizing the cost function,

Jn(un;u) =
T−1∑
t=0

{
p(

dt + ut

c
)un

t + δ(un
t − ut)

2
}

with respect to u, and
2 ut = avg(ut).
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Existence and uniqueness of the Nash equilibrium

Local optimal tracking strategy

Define un
t (u,A) satisfying:

un
t (u,A) =

1
2δ

max
{

0, A− p
(dt + ut

c

)
+ 2δut

}
Theorem
un(u,A) is the unique optimal control with respect to u.

Proof.
Apply the methods of Lagrange multipliers.
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Existence and uniqueness of the Nash equilibrium

Existence of Nash equilibrium

Theorem
Assume the price function p(r) is continuous on r . Then there
exists a Nash equilibrium for the infinite-population
decentralized charging control problem.

Proof.
We can show un,∗(u) is continuous on u; then avg(u∗

t (u)) is
continuous on u.
Hence by Brouwer’s fixed point theorem, there exists u,
such that avg(u∗

t (u)) = u.
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Existence and uniqueness of the Nash equilibrium

Uniqueness and convergence of Nash equilibrium

Theorem

Assume p(r) ∈ C1 and increasing on r , and δ satisfies

1
2c

sup
dp
dr
≤ δ ≤ a

c
inf

dp
dr
, with

1
2
< a < 1. (1)

Then the system converges to a unique Nash equilibrium.

Proof.
Under inequality (1),∣∣avg(u∗(u))− avg(u∗(v))

∣∣
1 ≤ (2− 1

a
)
∣∣u − v

∣∣
1 <

∣∣u − v
∣∣
1.

By the contraction mapping theorem, the system converges to
a unique fixed point u such that avg(u∗(u)) = u.
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Social optimality of the Nash equilibrium

Theorem
Suppose u∗ is a Nash equilibrium, and p is strictly increasing.
Then u∗ satisfies the properties,

avg(u∗
t ) ≥ avg(u∗

s), when dt ≤ ds,

avg(u∗
t ) + dt ≤ avg(u∗

s) + ds, when dt ≤ ds,

avg(u∗
r ) + dr = B, for all r ∈ [̂t0, t̂s],

with [̂t0, t̂s] a sub-interval of the charging period where un,∗ > 0,
for all n.

For a homogeneous population of PEVs, the above
properties correspond to exact valley filling.
For a heterogeneous population of PEVs, the properties
correspond to a strategy that nearly fills the valley.



Background Decentralized PEV charging controls Simulation examples Hysteretic control Conclusions

Homogeneous PEV populations
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Homogeneous PEV populations
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Homogeneous PEV populations
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Homogeneous PEV populations
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Homogeneous PEV populations
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Homogeneous PEV populations
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Homogeneous PEV populations
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2 classes of PEV populations



Background Decentralized PEV charging controls Simulation examples Hysteretic control Conclusions

Load control: air conditioning

Control of air-conditioning load (Callaway)

Steady-state temperature distribution for 10,000 cooling loads.

Regions:
‘a’ contains only loads in the off state.
‘b’ contains loads in both on and off state.
‘c’ contains only loads in the on state.

Control strategy:
Increase load by lowering setpoint.
Decrease load by raising setpoint.
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Load control: air conditioning

Tracking wind variations

Controlling air-conditioning loads to follow wind variations.
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Load control: PEV charging

Hysteresis-based control of PEV load

Establish a hysteresis band around the nominal charging
trajectory.
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Load control: PEV charging

Hysteresis-based control of PEV load

Establish a hysteresis band around the nominal charging
trajectory.
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Load control: PEV charging

Tracking control

Total PEV charging load can be forced to track a desired
schedule.
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Load control: PEV charging

Tracking control

Total PEV charging load can be forced to track a desired
schedule.
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Conclusions

Significant actuation can be achieved through coordinated
control of large numbers of highly distributed loads.
Issues:

Control structure, latency, data security, ...
Incentives for consumers to participate in fast-acting
demand response schemes.
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