Background

Decentralized PEV charging controls

Simulation examples

Hysteretic cont

Conclusions

Challenges and Opportunities in Controlling Electrical Loads

lan Hiskens

University of Michigan

work undertaken with

Zhongjing Ma (Beijing Institute of Technology Duncan Callaway (University of California - Berkeley) Soumya Kundu (University of Michigan)

Focus Period on Dynamics, Control and Pricing in Power Systems May 18-20, 2011

Background ●○○○○○	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions
Motivation				
Motivatio	n			

- Current paradigm:
 - Load is an exogenous input.
 - Generation tracks fluctuations.
- This will not work when renewable generation is a significant proportion of total load.
 - Ramp rate limits on generators.
 - Need excessive amount of reserve, which is expensive.
- Ubiquitous communications facilitates control of highly distributed loads.

Background	
0000000	

Simulation examples

Hysteretic control

Conclusions

Motivation

Hierarchical control structure

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions	
Motivation					
Plug-in electric vehicles					

 Charging control strategies will be vitally important for ensuring large-scale adoption of plug-in EVs does not cause generation scheduling problems.

Background	
0000000	

Simulation examples

Hysteretic control

Conclusions

Motivation

Time-based charging strategy

Background	
0000000	

Simulation examples

Hysteretic control

Conclusions

Motivation

Price-based charging strategy

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions
Model				
Dynamic	s and notation			

Individual SOC dynamics

$$x_{t+1}^n = x_t^n + \frac{\alpha^n}{\beta^n} u_t^n, \qquad i = 0, ..., T-1$$

Ν	Size of PEV population
[0, <i>T</i>]	Charging interval
β^{n}	Battery size of PEV <i>n</i>
$u_t^n \ge 0$	Charging rate for PEV <i>n</i>
$\dot{\alpha^n}$	Charging efficiency of PEV n
x ⁿ	State of charge (SOC) of PEV <i>n</i> at time <i>t</i>
x_0^n	Initial SOC value of PEV <i>n</i>

Background ○○○○○●	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions
Model				
Large po	opulations			

- Assume $N \to \infty$.
- Total electricity generating capacity, C/N = c.
- Total non-PEV demand at time t, $D_t/N = d_t$.
- Electricity price function

$$p(\cdot) \equiv p\Big(\frac{D_t + \sum_{n=1}^N u_t^n}{C}\Big) = p\Big(\frac{d_t + \operatorname{avg}(\mathbf{u}_t)}{C}\Big).$$

where $\operatorname{avg}(\mathbf{u}_t) \triangleq \frac{1}{N} \sum_{n=1}^{N} u_t^n$.

Define

$$r_t \equiv \frac{d_t + \operatorname{avg}(\mathbf{u}_t)}{c}$$

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions		
Game-based decentralized PEV charging controls						
Individua	l costs					

Agent cost function

$$J^n(\mathbf{u}) \triangleq \sum_{t=0}^{T-1} p(r_t) u_t^n$$

Individual charging control problem

$$\min_{u^n} J^n(u^n; \mathbf{u}^{-n}),$$

subject to $u_t^n \ge 0$, and $x_T^n = 1$.

• **u*** is a Nash equilibrium (NE) iff

$$J^n(u^{n,*};\mathbf{u}^{-n,*}) \leq J^n(u^n;\mathbf{u}^{-n,*}),$$

for all u^n and all n.

Main result: The desired valley-filling strategy is given by the unique Nash equilibrium (as *N* approaches infinity).

Background

Decentralized PEV charging controls

Simulation examples

Hysteretic cont

Conclusions

Decentralized mechanism for obtaining the Nash equilibrium

Decentralized update mechanism

The following charging negotiation procedure takes place sometime prior to the actual charging interval.

- The utility broadcasts base demand d to PEVs.
- Each PEV proposes its optimal strategy with respect to a common aggregate PEV demand broadcast by the utility.
- The utility collects all the individual strategies proposed in (2), and updates the aggregate PEV demand accordingly. This updated aggregate demand is rebroadcast to all PEVs.
- Repeat (2) and (3) until the optimal strategies proposed by the PEVs no longer change.

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions
Decentralized med	hanism for obtaining the Nash equilibrium			

Non-convergence

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions		
Decentralized mechanism for obtaining the Nash equilibrium						
Modified (tracking) cost function						

To avoid oscillations, we introduce a tracking function:

$$J^{n}(\mathbf{u}) \triangleq \sum_{t=0}^{T-1} \left\{ p(r_{t}) u_{t}^{n} + \delta \left(u_{t}^{n} - \operatorname{avg}(\mathbf{u}_{t}) \right)^{2} \right\}$$

with tracking parameter $\delta > 0$.

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions
Decentralized med	chanism for obtaining the Nash equilibrium			

Theorem

The collection of charging controls $\mathbf{u} \equiv \{u^n; n < \infty\}$ is a Nash equilibrium if:

• Every uⁿ is a local control minimizing the cost function,

$$J^{n}(u^{n};\overline{u}) = \sum_{t=0}^{T-1} \left\{ \rho(\frac{d_{t}+\overline{u}_{t}}{c})u_{t}^{n} + \delta(u_{t}^{n}-\overline{u}_{t})^{2} \right\}$$

with respect to \overline{u} , and

$$\mathbf{\overline{u}}_t = avg(\mathbf{u}_t).$$

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions
Existence and u	iniqueness of the Nash equilibrium			

Local optimal tracking strategy

Define $u_t^n(\overline{u}, A)$ satisfying:

$$u_t^n(\overline{u}, A) = \frac{1}{2\delta} \max\left\{0, \ A - p\left(\frac{d_t + \overline{u}_t}{c}\right) + 2\delta\overline{u}_t\right\}$$

Theorem

 $u^n(\overline{u}, A)$ is the unique optimal control with respect to \overline{u} .

Proof.

Apply the methods of Lagrange multipliers.

Background

Decentralized PEV charging controls

Simulation examples

Hysteretic contro

Conclusions

Existence and uniqueness of the Nash equilibrium

Existence of Nash equilibrium

Theorem

Assume the price function p(r) is continuous on r. Then there exists a Nash equilibrium for the infinite-population decentralized charging control problem.

Proof.

- We can show u^{n,*}(u
) is continuous on u
 ; then avg(u^{*}_t(u)) is continuous on u
 .
- Hence by Brouwer's fixed point theorem, there exists u
 , such that avg(u^{*}_t(u)) = u.

Background

Decentralized PEV charging controls

Simulation examples

Hysteretic control

Conclusions

Existence and uniqueness of the Nash equilibrium

Uniqueness and convergence of Nash equilibrium

Theorem

Assume $p(r) \in C^1$ and increasing on r, and δ satisfies

$$\frac{1}{2c}\sup\frac{dp}{dr} \le \delta \le \frac{a}{c}\inf\frac{dp}{dr}, \quad \text{with } \frac{1}{2} < a < 1.$$
(1)

Then the system converges to a unique Nash equilibrium.

Proof.

Under inequality (1),

$$\left|\operatorname{avg}(\mathbf{u}^*(\overline{u})) - \operatorname{avg}(\mathbf{u}^*(\overline{v}))\right|_1 \leq (2 - \frac{1}{a}) \left|\overline{u} - \overline{v}\right|_1 < \left|\overline{u} - \overline{v}\right|_1.$$

By the contraction mapping theorem, the system converges to a unique fixed point \overline{u} such that $\operatorname{avg}(\mathbf{u}^*(\overline{u})) = \overline{u}$.

Background	Decentralized PEV charging controls	Simulation examples	Hysteretic control	Conclusions
Social optimality of	f the Nash equilibrium			

Theorem

Suppose \mathbf{u}^* is a Nash equilibrium, and *p* is strictly increasing. Then \mathbf{u}^* satisfies the properties,

> $\operatorname{avg}(\mathbf{u}_t^*) \ge \operatorname{avg}(\mathbf{u}_s^*), \quad \text{when } d_t \le d_s,$ $\operatorname{avg}(\mathbf{u}_t^*) + d_t \le \operatorname{avg}(\mathbf{u}_s^*) + d_s, \quad \text{when } d_t \le d_s,$ $\operatorname{avg}(\mathbf{u}_t^*) + d_t = B, \quad \text{for all } t \in [\widehat{t}_0, \widehat{t}_s],$

with $[\hat{t}_0, \hat{t}_s]$ a sub-interval of the charging period where $u^{n,*} > 0$, for all *n*.

- For a homogeneous population of PEVs, the above properties correspond to exact valley filling.
- For a heterogeneous population of PEVs, the properties correspond to a strategy that nearly fills the valley.

Background
0000000

Simulation examples

Hysteretic control

Conclusions

Background
0000000

Simulation examples

Hysteretic control

Conclusions

Background
0000000

Simulation examples

Hysteretic control

Conclusions

Background
0000000

Simulation examples

Hysteretic control

Conclusions

Background
0000000

Simulation examples

Hysteretic control

Conclusions

Background
0000000

Simulation examples

Hysteretic control

Conclusions

Background
0000000

Simulation examples

Hysteretic cont

Conclusions

Background	
0000000	

Simulation examples

Hysteretic control

Conclusions

2 classes of PEV populations

Background	
0000000	

Load control: air conditioning

Control of air-conditioning load (Callaway)

• Steady-state temperature distribution for 10,000 cooling loads.

- Regions:
 - 'a' contains only loads in the off state.
 - 'b' contains loads in both on and off state.
 - 'c' contains only loads in the on state.
- Control strategy:
 - Increase load by lowering setpoint.
 - Decrease load by raising setpoint.

Load control: air conditioning			
Background Decentralized PEV charging controls	Simulation examples	Hysteretic control ○●○○○○	Conclusions

Tracking wind variations

• Controlling air-conditioning loads to follow wind variations.

Background	Decentralized PEV charging controls	Simulation examples

Load control: PEV charging

Hysteresis-based control of PEV load

Establish a hysteresis band around the nominal charging trajectory.

ckground	Decentralized PEV	chargir
00000	0000000000	

Load control: PEV charging

Ba

Hysteresis-based control of PEV load

Establish a hysteresis band around the nominal charging trajectory.

Total PEV charging load can be forced to track a desired schedule.

Total PEV charging load can be forced to track a desired schedule.

Background	
0000000	

Conclusions

- Significant actuation can be achieved through coordinated control of large numbers of highly distributed loads.
- Issues:
 - Control structure, latency, data security, ...
 - Incentives for consumers to participate in fast-acting demand response schemes.