Hidden Convexity in Fundamental Optimization Problems in Power Networks

Javad Lavaei

Joint Work with Steven Low

Control and Dynamical Systems California Institute of Technology

Power Networks (TPS 11, IFAC 11, ACC 11, CDC 10, Allerton 10)

Passivity simplifies optimization for practical power networks

Generalizable to many problems in smart grids

Javad Lavaei, California Institute of Technology

Power Networks: Optimal Power Flow (OPF)

□ Stability...

Importance:

□ Solved every 5-15 mins for market and operation planning.

Javad Lavaei, California Institute of Technology

Power Networks: Needs for New Algorithms

Previous Attempts Since 1962:

Linear programming
 Interior point method
 Nonlinear programming
 Dynamic programming
 Lagrangian relaxation
 Genetic algorithms....

Findings by OR and Power People:

Multiple local solutions
 Disconnected region
 Convexification for trees

Existing algorithms lack:

- Robustness
- Performance guarantee
- Global optimality guarantee

Challenges for smart grid:

- □ Scalability issue (100X)
- □ Time-varying renewable
- Pricing mechanism (LMP)

Power Networks: Summary of Results

- **Goal:** Find a global solution in polynomial time
- □ Idea: Physical structure on OPF
- **First result**: A sufficient condition to solve OPF
- **Surprising result:** Condition holds on IEEE benchmark systems
- □ Important result: Condition holds widely in practice due to passivity
- **Promising result:** Generalization to many optimizations in smart grids

Power Networks: Summary of Results

Other results:

- Certificate for global optimality
- Shape of feasibility region
- Multiple solutions to power flow
- Existence of competitive equilibrium points
- Mechanism design

Power Networks: OPF Formulation

Power Networks: Weak Duality

Power Networks: Strong Duality

Important Constraint in Dual OPF:

$$A := \sum_{k \in \mathcal{N}} \left\{ \lambda_k Y_k + \gamma_k \bar{Y}_k + \mu_k M_k \right\} + \sum_{(I,m) \in \mathcal{L}} \left\{ \left(r_{Im} + \lambda_{Im} \right) Y_{Im} + \bar{r}_{Im} \bar{Y}_{Im} \right\} \succeq 0$$

Theorem: Zero duality gap if rank A at optimality is at least 2*n*-2.

Power Networks: Zero Duality Gap

Recall the constraint

$$A := \sum_{k \in \mathcal{N}} \left\{ \lambda_k Y_k + \gamma_k \bar{Y}_k + \mu_k M_k \right\} + \sum_{(I,m) \in \mathcal{L}} \left\{ \left(r_{Im} + \lambda_{Im} \right) Y_{Im} + \bar{r}_{Im} \bar{Y}_{Im} \right\} \succeq 0$$

 \Box We trade power based on $\lambda_1^{\text{opt}}, ..., \lambda_n^{\text{opt}}$

D Normal condition: Non-negativity of $\lambda_1^{\text{opt}}, ..., \lambda_n^{\text{opt}}$ (rigorous proof)

Theorem (real case): Zero duality gap under normal condition.

Sketch of proof: Use passivity and Perron-Frobenius Theorem.

$$A^{\text{opt}} = \begin{bmatrix} T^{\text{opt}} & 0 \\ 0 & T^{\text{opt}} \end{bmatrix} \succeq 0$$

$$T^{\circ}$$

$$\mathcal{T}^{\text{opt}} = \begin{bmatrix} ? & - & - & - \\ - & ? & - & - \\ - & - & ? & - \\ - & - & - & ? \end{bmatrix}$$

Power Networks: Zero Duality Gap

Lumped Model: Transmission lines, transformers and FACTS Devices are resistive + inductive.

□ Story of "normal condition" is much more complicated.

$$P_{L_k} - P_{D_k} = P_{L_l} - P_{D_l} = \tau \times \operatorname{Re}\{y_{kl}\}$$
$$Q_{L_k} - Q_{D_k} = Q_{L_l} - Q_{D_l} = \tau \times \operatorname{Im}\{-y_{kl}\}$$
$$\max\{P_{lm}, P_{ml}\} \le P_{lm}^{\max} - \tau \times \operatorname{Re}\{y_{kl}\}$$

□ Another challenge:

$$A^{\text{opt}} = \begin{bmatrix} T^{\text{opt}} & 0\\ 0 & T^{\text{opt}} \end{bmatrix} \qquad \blacksquare \qquad A^{\text{opt}} = \begin{bmatrix} T^{\text{opt}} & \overline{T}^{\text{opt}}\\ -\overline{T}^{\text{opt}} & T^{\text{opt}} \end{bmatrix}$$

Local Theorem: Zero duality gap for a small power loss.

Global Theorem: Given *Re(Y)*, zero duality gap **independent of loads** if *Im(Y)* belongs to an unbounded region.

Power Networks: More Advanced Problems

$$\begin{split} \min_{\mathbf{X}^{(0)},...,\mathbf{X}^{(c)},\mathbf{U}^{(0)},...,\mathbf{U}^{(c)}} f\left(\mathbf{X}^{(0)},\mathbf{U}^{(0)}\right) \\ g_t\left(\mathbf{X}^{(t)},\mathbf{U}^{(t)}\right) &= 0, \quad t = 0,...,c \\ h_t\left(\mathbf{X}^{(t)},\mathbf{U}^{(t)}\right) &\geq 0, \quad t = 0,...,c \\ \left|\mathbf{U}^{(r)}-\mathbf{U}^{(0)}\right| &\leq \Delta \mathbf{U}^{(r)}_{\max}, \quad r = 1,...,c \end{split}$$

OPF with variable shunt elements

- OPF with variable transformer ratios
- Dynamic OPF
- □ Security-constrained OPF
- □ Scheduling for renewable resources ...

Theorem: Zero duality gap for OPF implies zero duality gap for all these problems.

Proof:

Good modeling:

Bus 2

Power Networks: Impacts

□ Fundamental study of optimizations in power networks

Potential to change optimization algorithms for grids

Example 1: Global solution 15% better than local solution for modified IEEE 57-bus system

Example 2:

One generator and one load

Multiple solutions

□ Able to find them all by changing the cost function

□ Various feasibility regions:

 S_v = Feasibility region of OPF

 S_p = Projection of S_v onto the space of active powers

 S_p = Feasibility region of economic dispatch

Economic Dispatch:

$$\min_{(p_1,\ldots,p_k)\in S_p}\sum_{i=1}^k f_i(P_i)$$

Mechanism Design

D Existence of CEP:

Laws of physics introduce nonlinearity.

• OPF is NP-hard and has been studied for 50 years.

□ A large class of OPF problems can be convexified.

□ The main reason is the physical properties of the network.

□ This idea is useful to study many other related problems.