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1. Intro: Rate allocation in the Internet 
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Uses for this “virtual economy” of bandwidth 

• Interpretation of the equilibrium and dynamic properties of 
current TCP congestion control protocols. 

• Guides in design of new protocols with: 

– Better dynamic properties (convergence, etc.)   

– Use other utility functions, achieving other notions of fairness. 

• Extension to  cross-layer optimization, including other layers 
of the protocol stack, for both wired and wireless networks: 

– Routing 

– Medium access control (Scheduling, random access). 

– Physical layer control (power control, modulation,…) 

• However, the “real” economy of bandwidth doesn’t work this 
way. Why? 
– Bandwidth has been abundant, not crucial to optimally allocate it. 

– This control is faster than the human time-scale. 



1. Auctions 

• Popular trading mechanism 
– Fast, reliable and transparent way of setting market price. 

–  Various mechanisms exist, single and multi-unit auctions.  

 

• Open auctions for sale of a single unit 
– English: ascending bids, open-outcry, terminates when 

one bidder is left.  

– Dutch: descending bids, open-outcry, terminates when 
one bidder shouts “mine”. 

 

• Closed, sealed-bid auctions: 
– First price: highest bidder wins, pays his/her bid. 

– Second price (Vickrey): highest bidder wins, pays 2nd bid. 



Vickrey Auctions and truth revelation 

 

• In a second-price auction, it is rational for 

participants to bid their true valuation for the item: 

– They gain no reduction in payment by bidding below their 

valuation. 

– They might lose the auction if they do so.  

 

$5 

$2.5 

$3.7 

Bidder of $5 bid wins the auction, 

but pays $3.7 for the item. 



Multiple unit auctions 
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Is there a cost for  

truth revelation in 

loss of revenue for 

the seller? 

Revenue Equiva lence Theorem  (V ickrey, M yerson, R iley-Sam uelson)

Assum e: 

 R isk  neutra l buyers, va luations draw n from  a know n d istribu tion .

 M echanism  assigns ob jects to  b idders w ith  h ighest va luation . 
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How ever, equivalence does not hold if bu yers are risk averse, 

do not know  the d istribution, or do not have unbounded rationality. 

 In  such cases a first-price auction m ay g ive h igher revenue than VCG . 



Procurement auctions 
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2. Internet Bandwidth Auctions 

Based on 2011 paper in Computer Networks. Joint work with: 

• Pablo Belzarena (Universidad de la República, Uruguay) 

• Andrés Ferragut (Universidad ORT, Uruguay) 

 Scenario : a  ne tw ork  period ica lly 

  auctions capacity.

 Users subm it b ids fo r am ounts 

  o f end-to-end bandw id th . 

 A  d istribu ted a lgorithm  m ust  

  op tim a lly assign  capacity. 

 M otiva tion : overlay fo r

: ’00, ’0 ,

’0 , ’0 , . ’0

 p rem ium  

  serv ices over the  In ternet.

 Re la ted w ork  Lazar Sem ret  Shu Vara iya  3  

  Re ich l W rzaczek 5  M aillé Tuffin  6  Courcou betis e t a l  7 .

 

 



 Three issues and solution features 

1. Auction allocation/payment mechanism:  
– Optimize the value of accepted bids. 

– Charge 1st price, VCG would have high complexity (Maillé-Tuffin ´07). 

– Revenue equivalence argument.  

 

2. Distributed auction over a general network topology.  
– Bids submitted to “bandwidth brokers” distributed across the network.  

– Bidders need not know network topology, capacity, etc.   

– Brokers run a distributed algorithm to allocate the auction.  

 

3. Inter-temporal constraints.  
– Auctions are held periodically, for currently available capacity.   

– Service may be longer than the auction period, and reservations are in 
place: a connection, once assigned, cannot be displaced by future bids. 

– So the seller optimize over the risk of future bids: selling capacity now 
with a low bid can cause the rejection of a better bid in the future. 



Notation: auction for a single service   
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Auction over a network   
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Distributed allocation algorithm 
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Periodic auctions for one link 
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Optimal revenue problem 
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3. Auctions in the power grid 
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 Recall: three issues in bandwidth auctions 

1. Auction allocation/payment mechanism 
– Optimize the value of accepted bids. 

– Charge 1st price, VCG would have high complexity (Maillé-Tuffin ´07). 

– Revenue equivalence argument.  

 

2. Distributed auction over a general network topology.  
– Bids submitted to “bandwidth brokers” distributed across the network.  

– Bidders need not know network topology, capacity, etc.   

– Brokers run a distributed algorithm to allocate the auction.  

 

3. Inter-temporal constraints.  
– Auctions are held periodically, for currently available capacity.   

– Service may be longer than the auction period, and reservations are in 
place: a connection, once assigned, cannot be displaced by future bids. 

– So the seller optimize over the risk of future bids: selling capacity now 
with a low bid can cause the rejection of a better bid in the future. 



 Issue 1 revisited: pricing mechanism 

• In the Internet problem, we maximized the value of the bids 

admitted to the network. 

• Analog for a procurement auction: minimizing the cost of 

acquired power. Good for customers.  

• However, first-price (pay offers at their declared value) is not 

favored, a common market clearing price (MCP) is paid. Not 

quite VCG, but closer in spirit to 2nd price schemes. Is social 

welfare of sellers the objective?  

• Difference with bandwidth case: players (generator firms) are 

sophisticated, can afford to game the system.  

• Still, gaming is possible by combining                                     

two offers, e.g. hockey-stick bidding: 
MCP

     D



 Issue 2 revisited: network topology 

• Previous discussion applies to trading at a single location.  

• If a transmission network is present: 

– Offers associated with specific network buses. 

– ISO minimizes cost subject to meeting demand, and capacity 

constraints (the power being dispatchable). Prices become  

node-dependent (Locational Marginal Prices, LMPs). 

– Integer constraints present?  

– Underlying power flow more complex than convex constraints for 

the Internet case. Some papers use DC power flow. Recent 

developments (Lavaei-Low) on convexified OPF may be relevant 

here.). 

• Distributed solutions?  

– Do not appear so relevant in the ISO case. 

– Perhaps for auctions involving mutliple ISOs?  

 
 



 Issue 3 revisited: inter-temporal constraints 
• In the power problem, coupling over time can appear from  

startup  constraints: according to technology, some 

generator plants cannot easily be turned on and off.  
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 B lock b ids for m ultip le  in terva ls, increase auction com plexity.

 Perhaps a receding horizon po licy can b e usefu l for th is purpose. 



Conclusion 

• Bandwidth allocation has been the focus of substantial 
academic research over the last decade, as a test case for 
distributed optimization and economic theory.  

 

• In particular, we showed work on bandwidth auctions that 
attempts to put these models to practical use.  

 

• However, the practical Internet rarely follows sophisticated 
pricing schemes: too much abundance of bandwidth? 

 

• Given the “real” scarcity of energy, perhaps the power grid is a 
more adequate setting for exploiting these mathematical tools.   


