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1. Intro: Rate allocation in the Internet

Input rate x,

Link rate vy,
Capacity c,

e Network of links, indexed by I, with capacity ¢, (e.g. Mbps).

e End-to-end flows, indexed by r, rate x,
1 if route r uses link |

Ir “'r?

e Link rate aggregation:y, = Z R, X ,where R, :{
; 0 otherwise

Network Utility Maximization (Kelly "98)
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Solution through duality (Low-Lapsley '99)

Lagrangian L(x,p)=> [U (x,)-a,x,1+ > p.c,.

e Lagrange multiplier p,: "congestion price" of link |.

e (= R' P (g, = Z R, p, : total price of route 1).
|

Route price g,

Source rate X, Link rate y,

Link price p,

Dual algorithm
JSources solve x, :=argmax, [U, (X,)-q,X],

ILinks update prices as «, :=[a, +7,(y,~¢,)]", prices sent back.



Uses for this “virtual economy” of bandwidth

Interpretation of the equilibrium and dynamic properties of
current TCP congestion control protocols.

Guides in design of new protocols with:

— Better dynamic properties (convergence, etc.)

— Use other utility functions, achieving other notions of fairness.

Extension to cross-layer optimization, including other layers
of the protocol stack, for both wired and wireless networks:

— Routing

— Medium access control (Scheduling, random access).

— Physical layer control (power control, modulation,...)

However, the “real” economy of bandwidth doesn’t work this
way. Why?

— Bandwidth has been abundant, not crucial to optimally allocate it.

— This control is faster than the human time-scale.



1. Auctions

« Popular trading mechanism
— Fast, reliable and transparent way of setting market price.
— Various mechanisms exist, single and multi-unit auctions.

* Open auctions for sale of a single unit

— English: ascending bids, open-outcry, terminates when
one bidder is left.

— Dutch: descending bids, open-outcry, terminates when
one bidder shouts “mine”.

* Closed, sealed-bid auctions:
— First price: highest bidder wins, pays his/her bid.
— Second price (Vickrey): highest bidder wins, pays 2" bid.



Vickrey Auctions and truth revelation

Bidder of $5 bid wins the auction, $5
but pays $3.7 for the item. 537
$2.5

* |In a second-price auction, it is rational for
participants to bid their true valuation for the item:

— They gain no reduction in payment by bidding below their
valuation.

— They might lose the auction if they do so.



Multiple unit auctions
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Example: sell 3 units, choose 3 highest bidders. Alternatives:
U Charge bid amount: gives incentives for bidding below valuation.

UVickrey-Clarke-Groves (VCG) principle: charge users the loss
of valuation imposed to others by their presence.

In this case: presence of 2nd bidder changes others' total valuation
from b +b® + b to b +b® = Should charge b'".

U1t is shown VCG makes it rational to reveal the true valuations.



|s there a cost for b
truth revelation In
loss of revenue for 7) SRS S .
the seller?

v

Revenue Equivalence Theorem (Vickrey, Myerson, Riley-Samuelson)
Assume:

JRisk neutral buyers, valuations drawn from a known distribution.
JMechanism assigns objects to bidders with highest valuation.

= At Bayesian Nash equilibrium, all auction mechanisms yield the

same expected revenue for the auctioneer.

However, equivalence does not hold if buyers are risk averse,
do not know the distribution, or do not have unbounded rationality.

JIn such cases a first-price auction may give higher revenue than VCG.




Procurement auctions
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Je.g., buy 2 items from offers 1, 2. L _
JvCG: pay a'¥ to both. .
I B

Bids for buying and selling
Isell max{k p) > a“‘)}. Here, 2 items.
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b® (4)
— a
1 |
1 b(z) 1 1
——] 1 1
1 1 a(s) 1 1
1 1 | 1
1 1 1 1
1 1 1 i
1 ] (3) ! 1
1 (2) 1 1 1
1 a | b 1 1
1 ] 1 1
1 1 —
1 1 1 1
(1) 1 1 1 b(4) 1
a 1 1 1 1
| i i i
1 1 1 1
1 1 1 1
1 1 1 1 :
1 3 4



2. Internet Bandwidth Auctions

Based on 2011 paper in Computer Networks. Joint work with:
» Pablo Belzarena (Universidad de la Republica, Uruguay)
« Andrés Ferragut (Universidad ORT, Uruguay)
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UScenario: a network periodically
auctions capacity.

UUsers submit bids for amounts
of end-to-end bandwidth.

U A distributed algorithm must
optimally assign capacity.

U Motivation: overlay for premium

services over the Internet.
URelated work : Lazar — Semret 00, Shu — Varaiya 03,
Reichl- Wrzaczek’05, Maillé — Tuffin 06, Courcoubetis et al. ’07.



Three issues and solution features

1. Auction allocation/payment mechanism:

Optimize the value of accepted bids.
Charge 15t price, VCG would have high complexity (Maillé-Tuffin “07).
Revenue equivalence argument.

2. Distributed auction over a general network topology.

Bids submitted to “bandwidth brokers” distributed across the network.
Bidders need not know network topology, capacity, etc.
Brokers run a distributed algorithm to allocate the auction.

3. Inter-temporal constraints.

Auctions are held periodically, for currently available capacity.

Service may be longer than the auction period, and reservations are in
place: a connection, once assigned, cannot be displaced by future bids.

So the seller optimize over the risk of future bids: selling capacity now
with a low bid can cause the rejection of a better bid in the future.



Notation: auction for a single service

b1: user 1 bid

e N bids b >p® >p® > >p™

for o units of bandwidth.

| by: user N bid

Interpolate to piecewise linear, |

e Revenue from allocating U, (a) A
bandwidth a=No: ;
(first-price auction) R
% (i) (1) i i
| 1 1
U,(a)=> b". b .. : :
i=1 : |

concave function.
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Auction over a network

Let r represent a service, characterized by a
reserved bandwidth o between 2 endpoints.

Broker 1
_v

]

Single-path case: service has a fixed route,

defined by a routing m atrix R: %IBH

R, =1iff route r uses link I. Broker 3

Multipath generalizations are available. 5@@
Broker collects bids for this service: b >b® >p® > >p", %

If we admit bids for a total rate a , the total revenue is U, (a,) = > b,
i=1

Network optimal revenue auction

Integer program.
max > U  (a") Jer prog

Relaxation is a concave
utility maximization as
introduced in Kelly '98.
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Distributed allocation algorithm
Lagrangian L(a,a)= Y U _(a)+> alc-> Ral+) ac

Dual algorithm (from Low-Lapsley '99)
I Brokers solve a, :=argmax, [U, (a,)-q,a,], with g, => R,
route price. Amounts to selecting bids better than g, . |

JCommunicate a, to links, who update prices as a, = [a, +7,(y,-¢ )],

with y, = > R, a, link bandwidth demand. Prices sent back to brokers.
S
JCan be implemented in the control plane, variant of RSVP protocol.

Difficulty:
JU, (a,) not strictly concave, algorithm will ““chatter” around optimum.

USolution: proximal optimization with extra variable d,
K )
max> U, (a,) - ?r(ar -d,)", subjectto Y R,a <c,
r S r

(see Lin-Shroff '06, also useful for multipath case).



Periodic auctions for one link

Service of bandwidth o =1, single link of capacity C.

Collect bids for time of length T, allocate a“ bandwidth units at time kT

Allocated users have a reservation for service duration, assume exp(u).

p=e “": probability that a connection is still active at the next auction.

A

Occupied

k+1 - k k
X T ~BIn(x +a,p).
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(k =1)T kT (k +1)T fime

Myopic policy: a“ = C — x“, sell all currently available capacity.

May miss higher bids in the future.

W hat is the optimal policy?



Optimal revenue problem max 1im = ZE[U (a")]

n
—)oonk1

e Expectation with respect to bids (assume known distribution,
otherwise can be estimated) and the departure process.

e This is a Markov Decision Process (MDP).

e Solution is a policy a, = a(s,), where the state is s, = (x,,b,).

e a(s) can be found numerically, large compuational cost.

Receding horizon approximation:

a’=argmax__. .[U, (a)+E 1U_(C - x')]

Here U (a) = E[U,(a)] = ZE[b(')

e Optimize current revenue + expected revenue of next auction,

assuming all remaining capacity will be sold off at that time.

e Take auction a’, and repeat recursively.



Receding horizon policy: a, =arg max[U ,(a)+ EX1U_(C - X,)]

a<C-x,
e Reduces to intersection of decreasing marginal utilities (bids) with

acceptance thresholds, w, : cost of missed future opportunities.
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e In simple examples, one-step ahead policy approximates

well the optimal revenue.



ar

z': expected next-step allocation.

subjectto R(x,+a)=<C,

Fluid aproximation to receding horizon policy:

max U, (a) + U_(z) , subjectto x,+a<C, p(x,+a)+z<C.

CURRENT EXPECTED
REVENUE NEXT STEP
REVENUE

The network case

- current allocation, broker r

max ¥ U (a")+U(z")

VT '
CURRENT
CAPACITY
CONSTRAINT

EXPECTED FUTURE
CAPACITY
CONSTRAINT

Link 4
40 circ.

Link 1 Link 3
50 circ. 40 circ.

Link 2
50 circ.
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RP(x,+a)+z<C

Network utility maximization, with additional (step ahead) variables.

Distributed implementation: dual algorithm, proximal method.

Converges to fluid approximation, requires roundoff.

Extends to multipath routing.



3. Auctions in the power grid

e In deregulated wholesale electricity markets, auctions are

carried out by the Independent System Operator (ISO) to

buy power for, e.g. one day ahead demand.

e Procurement auction of the type mentioned before, except

that power is divisible and may be offered in different amounts.

unit price 4
($/MW h)

FRO
LAO

»

e Typically, a common market
price is set. Possible choices:

- Last Accepted Offer,
- First Rejected Offer
- Something in between.

e Two-sided (supply-demand)
R auctions also possible.

D
(demand)

quantity  Ref: Zimmerman '2010.
(MW)



Recall: three issues in bandwidth auctions

1. Auction allocation/payment mechanism

2. Distributed auction over a general network topology.

3. Inter-temporal constraints.



Issue 1 revisited: pricing mechanism

In the Internet problem, we maximized the value of the bids
admitted to the network.

Analog for a procurement auction: minimizing the cost of
acquired power. Good for customers.

However, first-price (pay offers at their declared value) is not
favored, a common market clearing price (MCP) is paid. Not
quite VCG, but closer in spirit to 2"d price schemes. Is social

welfare of sellers the objective?

Difference with bandwidth case: players (generator firms) are
sophisticated, can afford to game the system.

Still, gaming is possible by combining  ycp [
two offers, e.g. hockey-stick bidding:




Issue 2 revisited: network topology

Previous discussion applies to trading at a single location.
If a transmission network Is present:

Offers associated with specific network buses.

ISO minimizes cost subject to meeting demand, and capacity
constraints (the power being dispatchable). Prices become
node-dependent (Locational Marginal Prices, LMPSs).

Integer constraints present?

Underlying power flow more complex than convex constraints for
the Internet case. Some papers use DC power flow. Recent
developments (Lavaei-Low) on convexified OPF may be relevant

here.).

Distributed solutions?
— Do not appear so relevant in the ISO case.
— Perhaps for auctions involving mutliple 1ISOs?



Issue 3 revisited: inter-temporal constraints

* In the power problem, coupling over time can appear from
startup constraints: according to technology, some
generator plants cannot easily be turned on and off.

In Yan et al. (IEEE Power '08) an additive startup cost considered.

{"Bid cost minimization", Y a - q + S, need notselectcheapesta;s.

I offer in quantity startup

$/MW h cost

If this is done, inconsistent to pay at the MCP (mkt clearing marginal price).

{"Payment cost minimization" 3 MCP.q,+S, can reduce cost paid out.

But, seems an artifice of the payment choice.

' Startup costs do not represent correctly the multiple period case.
JBlock bids for multiple intervals, increase auction complexity.

Perhaps a receding horizon policy can be useful for this purpose.



Conclusion

Bandwidth allocation has been the focus of substantial
academic research over the last decade, as a test case for
distributed optimization and economic theory.

In particular, we showed work on bandwidth auctions that
attempts to put these models to practical use.

However, the practical Internet rarely follows sophisticated
pricing schemes: too much abundance of bandwidth?

Given the “real” scarcity of energy, perhaps the power grid is a
more adequate setting for exploiting these mathematical tools.



