Problem Formulation	Analytical Results	Empirical Studies	Future Directions

Selling Random Energy

Kameshwar Poolla UC Berkeley

May 2011

Kameshwar Poolla Selling Random Energy II LCCC Workshop

1 of 45

< 17 >

Co-conspirators

- Eilyan Bitar [Berkeley]
- Ram Rajagopal [Stanford]
- Pramod Khargonekar [Florida]
- Pravin Varaiya [Berkeley]

... and thanks to many useful discussions with: Duncan Callaway, Joe Eto, Shmuel Oren, Felix Wu

	Problem Formulation	Analytical Results	Empirical Studies	Future Directions
Outline				

1 Introduction

- 2 Problem Formulation
- 3 Analytical Results
- 4 Empirical Studies
- 5 Future Directions

Kameshwar Poolla Selling Random Energy II

Wind Power Variability

Wind is variable source of energy:

- Non-dispatchable cannot be controlled on demand
- Intermittent exhibit large fluctuations
- Uncertain difficult to forecast

This is the problem! Especially large ramp events

< A

Wind Energy: Status Quo

Current penetration is modest, but aggressive future targets

- Wind energy is 25% of added capacity worldwide in 2009 (40% in US) – surpassing all other energy sources
- Cumulative wind capacity has doubled in the last 3 years growth rate in China $\approx 100\%$

Almost all wind sold today uses extra-market mechanisms

- Germany Renewable Energy Source Act TSO must buy all offered production at fixed prices
- CA PIRP program end-of-month imbalance accounting + 30% constr subsidy

Dealing with Variability

Today:

- Variability absorbed by operating reserves
- All produced wind energy is taken, treated as negative load
- Integration costs are socialized

Tomorrow:

- Deep penetration levels, diversity offers limited help
- Too expensive to take all wind, must curtail
- \blacksquare Too much reserve capacity \implies lose GHG reduction benefits

Today's approach won't work tomorrow

Dealing with Variability Tomorrow

At high penetration (> 20%), wind power producer (WPP) will have to assume integration costs [ex: ERCOT]

Consequences:

- **1** WPPs participating in conventional markets [ex: GB, Spain]
- WPPs responsible for reserve cost [ex: procure own reserves (BPA pilot), reserve cost sharing]
- **3** Firming strategies to mitigate financial risk [ex: Ibadrola]
 - energy storage, co-located thermal generation
 - aggregation services
- 4 Novel market systems
 - Intra-day [recourse] markets
 - Novel instruments [ex: interruptible contracts]

Kameshwar Poolla Selling Random Energy II

Problem Formulation

- 1 Wind Power Model
- 2 Market Model
- 3 Pricing Model
- 4 Contract Model
- 5 Contract Sizing Metrics

Kameshwar Poolla Selling Random Energy II

Wind Power Model

Wind power w(t) is a stochastic process

- \blacksquare Marginal CDFs assumed known, $F(w,t) = \mathbb{P}\{w(t) \leq w\}$
- Normalized by nameplate capacity so $w(t) \in [0, 1]$

Time-averaged distribution on interval $[t_0, t_f]$

$$F(w) = \frac{1}{T} \int_{t_0}^{t_f} F(w, t) dt$$

Kameshwar Poolla

Selling Random Energy II

ex-ante: single forward market *ex-post*: penalty for contract deviations

Remarks:

- Offered contracts are piecewise constant on 1 hr blocks
- No energy storage ⇒ no price arbitrage opportunities ⇒ contract sizing decouples between intervals

Kameshwar Poolla Selling Random Energy II

Prices (\$ per MW-hour)

p = ex-ante clearing price in forward market

q = ex-post shortfall penalty price

Assumptions:

- Wind power producer (WPP) is a price taker
- Prices p and q are fixed and known [results easily extend to random prices uncorr with w]

Kameshwar Poolla

Metrics of Interest

For a contract C offered on the interval $[t_0, t_f]$, we have

profit acquired
$$\Pi(C, w) = \int_{t_0}^{t_f} pC - q \left[C - w(t)\right]^+ dt$$

energy shortfall $\Sigma_-(C, w) = \int_{t_0}^{t_f} \left[C - w(t)\right]^+ dt$
energy curtailed $\Sigma_+(C, w) = \int_{t_0}^{t_f} \left[w(t) - C\right]^+ dt$

These are random variables So we're interested in their expected values Many variants ex: sell spilled wind in AS markets, penalty for overproduction

Kameshwar Poolla

Optimal Contracts

Taking expectation with respect to w_{i}

$$J(C) = \mathbb{E} \Pi(C, w)$$

$$S_{-}(C) = \mathbb{E} \Sigma_{-}(C, w)$$

$$S_{+}(C) = \mathbb{E} \Sigma_{+}(C, w)$$

Optimal contract maximizes expected profit:

$$C^* = \arg\max_{C \ge 0} J(C)$$

A D > A A P >
 A

< ∃ >

Kameshwar Poolla

Selling Random Energy II

13 of 45

Theoretical

- Studying effect of wind uncertainty on profitability
- \blacksquare Understanding the role of p and q
- Utility of local generation and storage

Empirical

Calculating marginal values of storage, local-generation

Bigger picture

- Using studies to *design* penalty mechanisms to incentivize WPP to limit injected variability
- Dealing with variability at the system level

LCCC Workshop

Image: A marked black

Related Work

Botterud et al (2010)

Morales et al (2010)

Uncertainty in prices using ARIMA models AR models and wind power curves for wind production LP based solution using scenarios for uncertainties

■ Pinson et al (2007)

Asymmetric penalty structure, quantile formula for optimal bids

Dent at al (2011)

Quantile formula for optimal bids

Image: A marked black

Main Results

- 1 Optimal contracts in a single forward market
- 2 Role of forecasts
- **3** Role of reserve margins
- 4 Role of local generation
- 5 Role of energy storage
- 6 Optimal contracts with recourse

LCCC Workshop

Kameshwar Poolla Selling Random Energy II

16 of 45

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Optimal Contracts: γ -quantile policy

Theorem

Define the time-averaged distribution

$$F(w) = \frac{1}{T} \int_{t_0}^{t_f} F(w, t) dt$$

The optimal contract C^* is given by

$$C^* = F^{-1}(\gamma)$$
 where $\gamma = p/q$

Kameshwar Poolla

Selling Random Energy II

17 of 45

Optimal Contracts: Profit, Shortfall, & Curtailment

Theorem

The expected profit, shortfall, and curtailment corresponding to a contract C^* are:

$$J(C^*) = J^* = qT \int_0^{\gamma} F^{-1}(w) dw$$

$$S_{-}(C^*) = S_{-}^* = T \int_0^{\gamma} \left[C^* - F^{-1}(w) \right] dw$$

$$S_{+}(C^*) = S_{+}^* = T \int_{\gamma}^{1} \left[F^{-1}(w) - C^* \right] dw$$

LCCC Workshop

Kameshwar Poolla

Selling Random Energy II

18 of 45

Graphical Interpretation of Optimal Policy

Kameshwar Poolla

Selling Random Energy II

19 of 45

Graphical Interpretation of Optimal Policy

Profit:

 $J^* = qT A_1$

Shortfall:

$$S_{-}^{*} = T A_2$$

Curtailment:

 $S_+^* = T A_3$

< A

Kameshwar Poolla

Selling Random Energy II

20 of 45

Graphical Interpretation of Optimal Policy

Profit:

 $J^* = qT A_1$

Shortfall:

$$S_{-}^{*} = T A_2$$

Curtailment:

 $S_+^* = T A_3$

< A

Kameshwar Poolla

Selling Random Energy II

21 of <u>45</u>

Large penalty q, price/penalty ratio $\gamma\approx 0$

- optimal contract ≈ 0
- optimal expected profit ≈ 0
- sell no wind too much financial risk for deviation

Small penalty q, price/penalty ratio $\gamma\approx 1$

- \blacksquare offered optimal contract $\approx 1 = \mathsf{nameplate}$
- optimal expected profit $= pT\mathbb{E}[W]$
- sell all wind no financial risk for deviation

 $\operatorname{Price}/\operatorname{penalty}$ ratio γ controls prob of meeting contract, curtailment, variability taken

Result is simple application of Newsboy problem

Kameshwar Poolla Selling Random Energy II

The Role of Information

Kameshwar Poolla

Selling Random Energy II

23 of 45

The Role of Information

Kameshwar Poolla

Selling Random Energy II

24 of 45

Good Forecasts are Valuable

Better information \Rightarrow larger profit

ex: $W \sim \text{uniform}$

$J^* = \underbrace{pT\mathbb{E}[W]}_{\text{perfect forecast}} - \underbrace{pT\sigma\sqrt{3}(1-\gamma)}_{\text{loss due to forecast errors}}$

loss due to forecast errors is linear in std dev σ

General case: Can quantify value of information using deviation measures

Kameshwar Poolla Selling Random Energy II

____ 25 of 45

The Role of Reserve Margins

Reserve Cost = Capacity Cost + Energy Cost

- Status quo: added cost of reserve margins for wind is socialized
- With increased penetration, WPPs will assume the cost
 ex: BPA-Iberdrola-Constellation project
- Current reserve calculation is deterministic (worst-case)
- Too conservative for wind reduction in net GHG benefit

Risk-limiting calculation of reserves a natural alternative

Image: A math a math

Risk-limiting Reserve Margins

Idea: WPP procures reserve margin to cover largest deficit with probability $\geq 1-\epsilon$

Reserve Calculation

ϵ	risk level (LOLP)	
C	contract offered by WPP	
Δ	deficit at time $t = [C - w]^+$	
$R(C,\epsilon)$	reserve margin	

$$R(C,\epsilon) = \min_{R \geq 0} R \quad \text{s.t.} \quad \mathbb{P}\left\{R \leq \Delta\right\} \leq \epsilon$$

Reserve margin $R(C, \epsilon)$ covers largest deficit with prob $> 1 - \epsilon$

Kameshwar Poolla

Selling Random Energy II

27 of 45

Reserve Margin Pricing

• Capacity price q_c

ex ante capacity payment for keeping reserve on call

• Energy Price q_e

ex post energy payment for deficits $< R(C, \epsilon)$

Selling Random Energy II

イロト イロト イヨト

Optimal Contracts with Reserve Costs

Theorem

The required reserve capacity is

$$R(C,\epsilon) = \left[C - \min_{t} F^{-1}(\epsilon,t)\right]$$

The optimal contract C_R^* is

$$C_R^* = F^{-1}(\gamma_R)$$
 where $\gamma_R = (p - q_c)/q_e$

Kameshwar Poolla

Selling Random Energy II

29 of 45

< A

Role of Local Generation

- Can be used to firm wind power
- Large capital costs \Rightarrow need for cost/benefit analysis
- What is profit gain from investment in small local generation?

Marginal values are critical for systems planning!

Expected profit criterion with local generation

$$J_L(C) = \mathbb{E} \int_{t_0}^{t_f} \underbrace{pC}_{\text{revenue}} - \underbrace{\phi\left(C - w(t), \ L\right)}_{\text{imbalance energy payment}} dt$$

Kameshwar Poolla

Selling Random Energy II

Image: A marked black

< ∃ >

Marginal Value of Local Generation

Theorem

The optimal contract C solves

$$p = q_L F(C) + (q - q_L) F(C - L)$$

The marginal value of local generation at the origin is

$$\left. \frac{dJ^*}{dL} \right|_{L=0} = \left(1 - \frac{q_L}{q} \right) pT$$

Kameshwar Poolla

Selling Random Energy II

LCCC Workshop

32 of 45

< A

Energy Storage

WPP has co-located energy storage facility

Questions:

- ex ante Optimal contract with local storage?
- ex post Optimal storage operation policy?
- Impact of storage capacity [capital cost] on profit?

Can be treated as: finite-horizon constrained stochastic optimal control problem

Kameshwar Poolla Selling Random Energy II LCCC Workshop

33 of 45

Analytical Results

Empirical Studie

A B > A B >

Future Directions

Energy Storage Model

Model:
$$\dot{e}(t) = \alpha e(t) + \eta_{\rm in} P_{\rm in}(t) - \frac{1}{\eta_{\rm ext}} P_{\rm ext}(t)$$

Constraints: $\begin{array}{rcl}
0 \leq & e(t) & \leq \overline{e} \\
0 \leq & P_{\rm in}(t) & \leq \overline{P}_{\rm in} \\
0 \leq & P_{\rm ext}(t) & < \overline{P}_{\rm ext}
\end{array}$

Dynamics and constraints are linear

Kameshwar Poolla

Selling Random Energy II

34 of 45

Marginal Value of Energy Storage (Intuition)

Consider storage system [small capacity ϵ , not lossy]

Intra-day Markets

- *ex-ante*: In market n, offer contract C_n at price p_n
- *ex-post*: Imbalance deviation penalty from cumulative contract $C = \sum_{k=1}^{N} C_k$

Trade-off:decreasing prices , increasing informationSolution:stochastic dynamic programming

Kameshwar Poolla Selling Random Energy II LCCC Workshop

Image: Image:

< A

Interruptible Power Contracts

Dealing with ramp events

- WPP offers contract with reprieve
- Reprieve must be managed by ISO
- Is this effective? pricing?

Interruptible Power Contracts ...

Selling Random Energy II

38 of 45

Wind Power Data

Bonneville Power Authority [BPA]

- Measured aggregate wind power over BPA control area
- Wind sampled every 5 minutes for 639 days

Kameshwar Poolla Selling Random Energy II LCCC Workshop

39 of 45

Empirical Wind Power Model

Empirical autocorrelation $\mathbb{E} w(t)w(t+\tau)$

Kameshwar Poolla

Selling Random Energy II

Empirical Distributions

Empirical CDFs for nine different hours

Kameshwar Poolla

Selling Random Energy II

Optimal Forward Contracts

- Optimal contracts for $\gamma = [0.3:0.9]$
- Consistent with typical wind pattern
- Bigger penalty smaller contract

Kameshwar Poolla

Selling Random Energy II

42 of 45

Optimal Expected Profit - Empirical

Optimal expected profit J^{\ast} as a function of γ

Kameshwar Poolla

Selling Random Energy II

Image: A marked black

Marginal Value of Storage - Empirical

Useful in sizing storage

Kameshwar Poolla Selling Random Energy II

< A

Future Directions

- Alternative penalty mechanisms that support system flexibility
- Network aspects of wind integration
- Aggregation and profit sharing
- New markets systems: interruptible power contracts