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Combine with water power reservoirs in northern Sweden

Use wind farms to stabilize network

AEOLUS project: Distributed coordination of wind turbines
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A Power Transmission Network
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Potential differences drive currents (voltage*current = power)
Price differences drive commodity flows (price*amount = value)
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An Optimal Flow Problem for AC Power
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Ik ∈ C

Vk ∈ C

Minimize Re
∑

k I
∗
kVk

subject to I = YV and Pk ≤ Re (I∗kVk) ≤ Pk
Q
k
≤ Im (I∗kVk) ≤ Qk

vk ≤ pVkp ≤ vk for k = 1, . . . , 4

(Convex relaxation by Lavaei/Low inspired this talk.)
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Problem I: Optimizing Static Power Flow
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ik ∈ R

vk ∈ R

Minimize
∑

k ikvk

subject to i = Yv and ikvk ≤ pk

(vk − vj)
2 ≤ ckj

vk ≤ vk ≤ vk for all k, j

Notice: pk negative at loads, positive at generators.
Motivation: 1) Real DC networks. 2) Approximation of AC.

3) Water tanks. 4) Supply chains
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Further questions regarding Problem I

Are there distributed solution algorithms?

Will market mechanisms find the optimum?

Optimize transition when demand changes! (Problem II)

Anders Rantzer Optimizing Dynamic Power Flow



Problem II: Optimizing Dynamic Power Flow
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ik(t) ∈ R

vk(t) ∈ R

Minimize
∑

k

∫∞
0
ik(t)vk(t)dt

subject to I(s) = Y(s)V (s) and ik(t)vk(t) ≤ pk

pvk(t) − vj(t)p
2 ≤ ckj

vk ≤ vk(t) ≤ vk for all k, j

Convexly solvable when off-diagonal elements of Y(s) have
non-negative impulse response! (e.g. ramp dynamics)
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Positive Quadratic Programming

Given A0, . . . , AK ∈ Rn$n with nonnegative off-diagonal entries
and b1, . . . , bK ∈ R, the following equality holds:

max xTA0x = max trace(A0X )

subject to x ∈ Rn+ subject to X 4 0

xTAkx ≥ bk trace(AkX ) ≥ bk
k = 1, . . . , K k = 1, . . . , K

Proof

If X =






px1p
2

∗

. . .
∗ pxnp

2




 maximizes the right hand side,

then x =






x1
...
xn




 maximizes the left.

[Kim/Kojima, 2003]
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An Optimal Flow Problem for DC Power
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Minimize i3v3 + i4v4

subject to i = Yv and i1v1 ≤ p1
i2v2 ≤ p2

vk ≤ vk ≤ vk for k = 1, . . . , 4
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An Optimal Flow Problem for DC Power
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Minimize (−y32v2 + y32v3)v3 + (−y41v1 − y42v2 + y41v4 + y42v4)v4

subject to (y12v1 + y14v1 − y12v2 − y14v4)v1 ≤ p1
(−y21v1 + y21v2 + y23v2 + y24v2 − y23v3 − y24v4)v2 ≤ p2

pvkp
2 ≤ pvkp

2 ≤ pvkp
2

Note: The problem is convex in pv1p2, . . . , pv4p2!
Anders Rantzer Optimizing Dynamic Power Flow



An Optimal Flow Problem for DC Power
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Dual Positive Quadratic Programming

Given A0, . . . , AK ∈ Rn$n with nonnegative off-diagonal entries
and b1, . . . , bK ∈ R, the following equality holds:

max xTA0x = min −
∑

k λ kbk

subject to x ∈ Rn+ subject to λ1, . . . ,λK ≥ 0

xTAkx ≥ bk 0 4 A0 +
∑

k λ kAk

k = 1, . . . , K

Interpretation:
In the power flow example, λ k is the price of power at node k.
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Dual Positive Quadratic Programming

Given A0, . . . , AK ∈ Rn$n with nonnegative off-diagonal entries
and b1, . . . , bK ∈ R, the following equality holds:

max xTA0x = min −
∑

k λ kbk

subject to x ∈ Rn+ subject to λ1, . . . ,λK ≥ 0

xTAkx ≥ bk 0 4 A0 +
∑

k λ kAk

k = 1, . . . , K

Distributed solution:
The agent at node k bying power over node jk compares
prices at both ends and adjusts for power losses in the link.
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Positive systems have nonnegative impulse response

If the matrices A, B, C and D have nonnegative coefficients
except for the diagonal of A, then the system

dx

dt
= Ax + Bu

y= Cx + Du

has non-negative impulse response.

Example:

L
di

dt
= −Ri+ v inductive transmission line

y= i
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Positive systems have nonnegative impulse response

If the matrices A, B, C and D have nonnegative coefficients
except for the diagonal of A, then the system

dx

dt
= Ax + Bu

y= Cx + Du

has non-negative impulse response.

Example:

dv

dt
= −αv+ u generator ramp dynamics

y= v
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Positive systems

Suppose the matrices A, B, C and D have nonnegative
coefficients except for the diagonal of A:

dx

dt
= Ax + Bu

y= Cx + Du

Properties:

Stability verified by linear or diagonal Lyapunov functions.

Maximal gain for zero frequency:

max
ω
qC(iω I − A)−1B + Dq = qD − CA−1Bq
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Dynamic Positive Programming

Let A0(s), . . . , AK (s) have off-diagonal entries with nonnegative
impulse response and b1, . . . , bK ∈ R. Then the following
equality holds:

max
∫∞
−∞ x(iω )

∗A0(iω )x(iω )dω

subject to
∫∞
−∞ x(iω )

∗Ak(iω )x(iω )dω ≥ bk

x ∈ Hn+, k = 1, . . . , K

= max
∫∞
−∞ trace(A0X )dω

subject to
∫∞
−∞ trace(AkX )dω ≥ bk

X (iω ) 4 0, k = 1, . . . , K

where Hn+ consists of all stable transfer functions with
nonnegative impulse response.
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Positive Quadratic Programming

Let A0(s), . . . , AK (s) have off-diagonal entries with nonnegative
impulse response and b1, . . . , bK ∈ R. Then the following
equality holds:
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Proof
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Problem II: Optimizing Dynamic Power Flow

v4
i4

v1
i1

v2
i2v3

i3

ik ∈ R

vk ∈ R

Minimize
∑

k

∫∞
0
ik(t)vk(t)dt

subject to I(s) = Y(s)V (s) and ik(t)vk(t) ≤ pk

pvk(t) − vj(t)p
2 ≤ ckj

vk ≤ vk(t) ≤ vk for all k, j

Convexly solvable when off-diagonal elements of Y(s) have
non-negative impulse response! (Inductive loads)
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Summary

• Positive Quadratic Programming
• Optimizing Static Power Flow
• Dynamic Positive Programming
• Optimizing Dynamic Power Flow
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