
Learning Flexible Goal-Directed Behavior

Christian Balkenius

Lund University Cognitive Science

Wednesday, April 18, 12

http://www.lccc.lth.se/index.php?mact=ReglerSeminars,cntnt01,abstractbio,0&cntnt01workshop=Symp1204&cntnt01abstractID=325&cntnt01origid=142&cntnt01returnid=Abstract
http://www.lccc.lth.se/index.php?mact=ReglerSeminars,cntnt01,abstractbio,0&cntnt01workshop=Symp1204&cntnt01abstractID=325&cntnt01origid=142&cntnt01returnid=Abstract

Wednesday, April 18, 12

Wednesday, April 18, 12

Wednesday, April 18, 12

Wednesday, April 18, 12

Stimulus-Approach

Stimulus-Response

Contextual Inhibition

Wednesday, April 18, 12

E. L. Thorndike
(1874-1949)

E. C. Tolman
(1886-1959)

Wednesday, April 18, 12

E. L. Thorndike
(1874-1949)

E. C. Tolman
(1886-1959)

Reactive Behavior

Wednesday, April 18, 12

E. L. Thorndike
(1874-1949)

E. C. Tolman
(1886-1959)

Reactive Behavior Purposive Behavior

Wednesday, April 18, 12

A A

Mackintosh, 1983

Wednesday, April 18, 12

A A

Mackintosh, 1983

Wednesday, April 18, 12

A A

Stimulus-Response Stimulus-Approach

Mackintosh, 1983

Wednesday, April 18, 12

Wednesday, April 18, 12

B

Balkenius, Dacke, Balkenius, 2010

V

O

M

V

O

M

Turning velocity as function
of angle to target

lateral
zone

frontal
zone

V

O

M

Lateral velocity as function
of angle to target

V

O

M

Forward velocity as function
of distance to target

Forward velocity as function
of angle to target

A B

C D

Wednesday, April 18, 12

-60, 50, 0° 0, 50, 0° 60, 50, 0°

-60, 0, -0° 0, 0, 0° 60, 0, 0°

-60,-50, 0° 0, -50, 0° 60, -50, 0°

Balkenius, Robotics and Autonomous Systems 1998

Wednesday, April 18, 12

-60, 50, 0° 0, 50, 0° 60, 50, 0°

-60, 0, -0° 0, 0, 0° 60, 0, 0°

-60,-50, 0° 0, -50, 0° 60, -50, 0°

Balkenius, Robotics and Autonomous Systems 1998

-60, 50, 0° 0, 50, 0° 60, 50, 0°

-60, 0, -0° 0, 0, 0° 60, 0, 0°

-60,-50, 0° 0, -50, 0° 60, -50, 0°

Figure 3.1. Translation sensitivity within a view-field. The figure consists of nine views within a single view-

field with a size of approximately 1m2. The coordinates indicate distance in cm from the central position. The

central image shows the position where the template was learned.

0
2

4
6

8
10

12

0

5

10

0

0.2

0.4

0.6

0.8

1
corr

Figure 3.2 Sensitivity to translation when all

feature are allowed to contribute to the average

correlation. The match level decreases smoothly as

the robot is moved away from the location where the

template was learned. (The axes indicates the

coordinates of thedifferent samples.)

0
2

4
6

8
10

12

0

5

10

0

0.2

0.4

0.6

0.8

1
corr

Figure 3.3 Sensitivity to translation when a

correlation threshold of 0.7 was used together with a

hit threshold of 20%. A strong match is supported

even when the robot is moved 50 cm in either

direction away from the learned template position.

(The axes indicates the different samples.)

Wednesday, April 18, 12

-60, 50, 0° 0, 50, 0° 60, 50, 0°

-60, 0, -0° 0, 0, 0° 60, 0, 0°

-60,-50, 0° 0, -50, 0° 60, -50, 0°

Balkenius, Robotics and Autonomous Systems 1998

-60, 50, 0° 0, 50, 0° 60, 50, 0°

-60, 0, -0° 0, 0, 0° 60, 0, 0°

-60,-50, 0° 0, -50, 0° 60, -50, 0°

Figure 3.1. Translation sensitivity within a view-field. The figure consists of nine views within a single view-

field with a size of approximately 1m2. The coordinates indicate distance in cm from the central position. The

central image shows the position where the template was learned.

0
2

4
6

8
10

12

0

5

10

0

0.2

0.4

0.6

0.8

1
corr

Figure 3.2 Sensitivity to translation when all

feature are allowed to contribute to the average

correlation. The match level decreases smoothly as

the robot is moved away from the location where the

template was learned. (The axes indicates the

coordinates of thedifferent samples.)

0
2

4
6

8
10

12

0

5

10

0

0.2

0.4

0.6

0.8

1
corr

Figure 3.3 Sensitivity to translation when a

correlation threshold of 0.7 was used together with a

hit threshold of 20%. A strong match is supported

even when the robot is moved 50 cm in either

direction away from the learned template position.

(The axes indicates the different samples.)

Wednesday, April 18, 12

-60, 50, 0° 0, 50, 0° 60, 50, 0°

-60, 0, -0° 0, 0, 0° 60, 0, 0°

-60,-50, 0° 0, -50, 0° 60, -50, 0°

Balkenius, Robotics and Autonomous Systems 1998

-60, 50, 0° 0, 50, 0° 60, 50, 0°

-60, 0, -0° 0, 0, 0° 60, 0, 0°

-60,-50, 0° 0, -50, 0° 60, -50, 0°

Figure 3.1. Translation sensitivity within a view-field. The figure consists of nine views within a single view-

field with a size of approximately 1m2. The coordinates indicate distance in cm from the central position. The

central image shows the position where the template was learned.

0
2

4
6

8
10

12

0

5

10

0

0.2

0.4

0.6

0.8

1
corr

Figure 3.2 Sensitivity to translation when all

feature are allowed to contribute to the average

correlation. The match level decreases smoothly as

the robot is moved away from the location where the

template was learned. (The axes indicates the

coordinates of thedifferent samples.)

0
2

4
6

8
10

12

0

5

10

0

0.2

0.4

0.6

0.8

1
corr

Figure 3.3 Sensitivity to translation when a

correlation threshold of 0.7 was used together with a

hit threshold of 20%. A strong match is supported

even when the robot is moved 50 cm in either

direction away from the learned template position.

(The axes indicates the different samples.)

value

Wednesday, April 18, 12

3

2

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

Stimulus-Approach

Wednesday, April 18, 12

eye regions

Switching Control

Balkenius & Kopp, 1997

Wednesday, April 18, 12

eye regions

Switching Control

orienting Balkenius & Kopp, 1997

Wednesday, April 18, 12

eye regions

Switching Control

orienting

saccades

Balkenius & Kopp, 1997

Wednesday, April 18, 12

eye regions

Switching Control

orienting

saccades

fixation / smooth pursuit

Balkenius & Kopp, 1997

Wednesday, April 18, 12

Wednesday, April 18, 12

Wednesday, April 18, 12

Smooth Pursuit Eye-Movements

Wednesday, April 18, 12

Balkenius & Johansson, 2005

Wednesday, April 18, 12

F0 F1 F2 F3

Balkenius, Åström, Eriksson, 2004

Orienting

Wednesday, April 18, 12

F0 F1 F2 F3

A Learning Saliency Map

Christian Balkenius & Co.

Lund University Cognitive Science
Kungshuset, Lundagård
222 22 LUND, Sweden

Abstract

1 Introduction

Bayesian approaches Spatial and feature based attention

Models not involving learning Itti and Koch

Schema-based approaches

ANN-based approaches

Bayesian approaches

Rl approaches Ballard (200?), Schmidhuber (1995),

Omori, Balkenius (2000)

2 Feature Based Attention

A saliency map S(x, y) is a linear combination of a
number of feature maps Fm convolved with a smooth-

ing functionG:

S(x, y) = G(x, y) ∗
∑

m

θmFm(x, y)

The feature maps Fm can be the result of simple vi-

sual operators such as line and edge detectors but can

also be generated by more complex image processing

algorithms. The smoothing function G is typically a

gaussian or a box filter.

The central idea of this article is that the saliency map

S can be seen as an approximation of a value function
for reinforcement learning. S(x, y) is thus an estima-
tion of the reinforcement that will be received if loca-

tion 〈x, y〉 is attended. Unlike the standard action-value

function in reinforcement learning, there is no state in

this formulation. Instead, each location in the image

corresponds to an individual action that directs atten-

tion to that location.

The next location to attend is selected by generating

a probability density function over the image from the

salience map. For example, the location can be selected

using the Boltzmann distribution

p(x, y) =
e−S(x,y)/T

∑
x′y′ e−S(x′,y′)/T

,

where T is a temperature parameter that determines

how random the selection should be.

When the location has been selected in the image,

a gradient ascend is performed on S to find the clos-

est local maximum in the saliency map. This parti-

tions the position space into a finite number of regions,

each corresponding to a local maximum of S. Although
not strictly necessary, this makes the selected locations

more stable which improves visual processing in subse-

quent steps.

Alternatively, an ε-greedy method can be used where
the maximum location is selected except at exploratory

trials, which occur with probability 1 − ε.

At each time step, the error in the value function is

calculated as

δt = [rt(x
′, y′) − St−τ (xt−τ , yt−τ)]

where τ is the delay between the fixation of a stimulus
and the time when the corresponding reinforcement is

received. This delay is necessary since there will typi-

cally be a substantial delay between the time when the

salience map selects a particular location and the time

when reinforcement is received which may only occur

after a slow object recognition phase. The coefficients

Balkenius, Åström, Eriksson, 2004

Orienting

Wednesday, April 18, 12

Balkenius, 2000

Saccades

stimulus-response

Wednesday, April 18, 12

Balkenius, 2000

Saccades

stimulus-response

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

Wednesday, April 18, 12

Balkenius & Johansson, 2005

Smooth
Pursuit

stimulus-approach

Wednesday, April 18, 12

Balkenius & Johansson, 2005

Smooth
Pursuit

stimulus-approach

delay

delay

delay

DELAY LINE

p(t)

p(t+n)

p(t-1)

p(t-2)

p(t-3)

Linear
Predictor

Wednesday, April 18, 12

Balkenius & Johansson, 2005

Smooth
Pursuit

stimulus-approach

delay

delay

delay

DELAY LINE

p(t)

p(t+n)

p(t-1)

p(t-2)

p(t-3)

Linear
Predictor

Prediction confidence sets
the gain of the controller

Wednesday, April 18, 12

The Development of Smooth Pursuit

• Gradual development
from catch up saccades
to smooth pursuit from
0-4 month

Data from von Hofsten & Rosander, 1997

Simulation from Balkenius & Johansson,
Epigenetic Robotics, 2005

Wednesday, April 18, 12

The Development of Smooth Pursuit
two signals that are used to detect events: the track-
ing error and the recognition of the target objects.
Fast changes of the tracking error will thus be con-
sidered as an event as will the appearance or disap-
pearance of the target.

2.4 Learning to Anticipate

The anticipated changes in target motion and loca-
tion are learned as associations between two events:
E1 → E2, where E1 may be the disappearance of the
target or the fact that the target reaches a certain
location, and E2 is the reappearance of the target or
the expected new position of the target.

The learned associations does not only code that
a target disappearing at a location 〈x, y〉 will appear
at another 〈x′, y′〉, but also the time between the two
events ∆t and the expected velocity when the target
reappears v (Poliakoff, Collins & Barnes, 2004):

〈x, y〉 → 〈x′, y′,∆t, v〉

This learning is driven by the rewarding property
of the target. This is consistent with the observation
that all brain systems involved in the linking between
visual stimulation and oculomotor behavior encode
the expected value of the target (McCoy & Platt,
2005).

The anticipatory saccades constitute a form of
adaptive switching control strategy, where the an-
ticipatory saccade controller quickly sets the param-
eters of the smooth pursuit controller to immediately
obtain good tracking performance (Huang & Lin,
2004). Evidence that arbitrary stimuli can be used to
predict the appearance, time and velocity of a stim-
ulus in adults comes from experiment by Barnes and
Donelan (1999).

3. Overview of Results

3.1 Smooth Pursuit

The development of the tracking system was simu-
lated by gradually increasing the gain of the smooth
pursuit system and by increasing the influence of
event predictions on the target position and velocity
estimation. A fixed predictive model was used which
was tuned to the 100 ms delay of visual input. A new
frame was processed every 20 ms to parallel the hu-
man visual bandwidth of approximately 50Hz. The
target moved either according to a sinusoidal path
or in a triangular way (Fig. 2). One cycle lasted for
5 second and the target moved over 60 degrees from
end to end.

Fig. 2 shows the development of smooth pursuit
from initial saccadic tracking to the final model based
tracking. Even when a predictive model is used to
control the gaze, there is still a small overshoot that
is casued by the abrupt change of direction in the

Figure 2: The development of tracking behavior of a si-
nusoidal and triangular target motion. Left: No smooth
pursuit. Middle. An intermediate stage. Right: Fully de-
veloped predictive smooth pursuit. The difference between
the tracking motions is mainly a result of an increased
gain of smooth pursuit. Note that there is still a small
overshoot in the triangular case.

Figure 3: En example scene with a ball falling down and
rolling through two pipes and a slide. The white arrows
indicate locations where the system will learn associations
between the disappearance and appearance of the ball.

triangular motion. This overshoot almost completely
disappears when the event detection system is added
(data not shown). In this case, the predicted target
location at the end of the envelope triggers an event
that will associate to a new velocity and direction of
the target.

3.2 Motion and Events

The complete system was tested with a more com-
plicated version of the train in the tunnel scene. An
animation was shown to the system where a ball falls
down and rolls through two pipes before falling again
and rolling on a slide before falling out of the scene
(Fig. 3). The system learns both to track the target
ball when it is visible and to anticipate the reappear-
ance of the ball when it is hidden in one of the pipes.

• Gradual development
from catch up saccades
to smooth pursuit from
0-4 month

Data from von Hofsten & Rosander, 1997

Simulation from Balkenius & Johansson,
Epigenetic Robotics, 2005

Wednesday, April 18, 12

Learning to Reach

16 CHAPTER 2. NEURAL CODING AND TRANSFORMATION

S1 S2

S1 S2

A.

B.

Coded Dimension

Tuning
Curve

Tuning
Curves

D
et

ec
to

r R
es

po
ns

e
D

et
ec

to
r R

es
po

ns
e

Coded Dimension

Population
Response

to S1

Population
Response
to S2

Detector
Response

to S1

Detector
Response
to S2

D1 D2 D3 D1 D2

D1 D1

D3

FIGURE 2.2: The advantage of several tuned detectors. A. With a single tuned detector D1

the two stimuli S1 and S2 give identical responses. B. With three differently tuned detectors

D1, D2 and D3, stimulus S1 and S2 give different responses in the population of detectors

(darker circles indicate stronger reactions).

location of tactile stimulation. This section introduces some basic properties of

population codes that are useful for understanding how the brain codes proximal

stimuli at the receptor level.

Consider a linear dimension such as position along a line. A single tuned de-

tector is only able to code the distance to the single position on the line to which

is is tuned. Fig. 2.2 illustrates this situation. In Fig. 2.2A the two stimuli S1 and

S2 at different positions along the dimension give identical responses from the de-

tector. When several detectors are used, as in Fig. 2.2B, the two stimuli will give

different responses from the three detectors which together can code the location

of the stimulus. It is clear from this example that only bounded dimensions can be

coded in this way, but it should be noted that population codes can be used also for

high-dimensional spaces and circular dimensions such as angles (cf. Forsén, 2004).

Fig. 2.3 illustrates three types of coding of a sensory dimension: local coding,

coarse coding and tile coding.

Local coding In the simplest form of code, the stimulus dimension is divided

into a number of intervals and one detector with a binary response characteristic

Wednesday, April 18, 12

Learning to Reach

the system learns
associations between
retinal positions and joint
angles

16 CHAPTER 2. NEURAL CODING AND TRANSFORMATION

S1 S2

S1 S2

A.

B.

Coded Dimension

Tuning
Curve

Tuning
Curves

D
et

ec
to

r R
es

po
ns

e
D

et
ec

to
r R

es
po

ns
e

Coded Dimension

Population
Response

to S1

Population
Response
to S2

Detector
Response

to S1

Detector
Response
to S2

D1 D2 D3 D1 D2

D1 D1

D3

FIGURE 2.2: The advantage of several tuned detectors. A. With a single tuned detector D1

the two stimuli S1 and S2 give identical responses. B. With three differently tuned detectors

D1, D2 and D3, stimulus S1 and S2 give different responses in the population of detectors

(darker circles indicate stronger reactions).

location of tactile stimulation. This section introduces some basic properties of

population codes that are useful for understanding how the brain codes proximal

stimuli at the receptor level.

Consider a linear dimension such as position along a line. A single tuned de-

tector is only able to code the distance to the single position on the line to which

is is tuned. Fig. 2.2 illustrates this situation. In Fig. 2.2A the two stimuli S1 and

S2 at different positions along the dimension give identical responses from the de-

tector. When several detectors are used, as in Fig. 2.2B, the two stimuli will give

different responses from the three detectors which together can code the location

of the stimulus. It is clear from this example that only bounded dimensions can be

coded in this way, but it should be noted that population codes can be used also for

high-dimensional spaces and circular dimensions such as angles (cf. Forsén, 2004).

Fig. 2.3 illustrates three types of coding of a sensory dimension: local coding,

coarse coding and tile coding.

Local coding In the simplest form of code, the stimulus dimension is divided

into a number of intervals and one detector with a binary response characteristic

Wednesday, April 18, 12

Learning to Reach

the system learns
associations between
retinal positions and joint
angles

not driven by error
between hand position
and target

16 CHAPTER 2. NEURAL CODING AND TRANSFORMATION

S1 S2

S1 S2

A.

B.

Coded Dimension

Tuning
Curve

Tuning
Curves

D
et

ec
to

r R
es

po
ns

e
D

et
ec

to
r R

es
po

ns
e

Coded Dimension

Population
Response

to S1

Population
Response
to S2

Detector
Response

to S1

Detector
Response
to S2

D1 D2 D3 D1 D2

D1 D1

D3

FIGURE 2.2: The advantage of several tuned detectors. A. With a single tuned detector D1

the two stimuli S1 and S2 give identical responses. B. With three differently tuned detectors

D1, D2 and D3, stimulus S1 and S2 give different responses in the population of detectors

(darker circles indicate stronger reactions).

location of tactile stimulation. This section introduces some basic properties of

population codes that are useful for understanding how the brain codes proximal

stimuli at the receptor level.

Consider a linear dimension such as position along a line. A single tuned de-

tector is only able to code the distance to the single position on the line to which

is is tuned. Fig. 2.2 illustrates this situation. In Fig. 2.2A the two stimuli S1 and

S2 at different positions along the dimension give identical responses from the de-

tector. When several detectors are used, as in Fig. 2.2B, the two stimuli will give

different responses from the three detectors which together can code the location

of the stimulus. It is clear from this example that only bounded dimensions can be

coded in this way, but it should be noted that population codes can be used also for

high-dimensional spaces and circular dimensions such as angles (cf. Forsén, 2004).

Fig. 2.3 illustrates three types of coding of a sensory dimension: local coding,

coarse coding and tile coding.

Local coding In the simplest form of code, the stimulus dimension is divided

into a number of intervals and one detector with a binary response characteristic

Wednesday, April 18, 12

Learning to Reach

the system learns
associations between
retinal positions and joint
angles

not driven by error
between hand position
and target

population coding
supports interpolation and
some extrapolation

16 CHAPTER 2. NEURAL CODING AND TRANSFORMATION

S1 S2

S1 S2

A.

B.

Coded Dimension

Tuning
Curve

Tuning
Curves

D
et

ec
to

r R
es

po
ns

e
D

et
ec

to
r R

es
po

ns
e

Coded Dimension

Population
Response

to S1

Population
Response
to S2

Detector
Response

to S1

Detector
Response
to S2

D1 D2 D3 D1 D2

D1 D1

D3

FIGURE 2.2: The advantage of several tuned detectors. A. With a single tuned detector D1

the two stimuli S1 and S2 give identical responses. B. With three differently tuned detectors

D1, D2 and D3, stimulus S1 and S2 give different responses in the population of detectors

(darker circles indicate stronger reactions).

location of tactile stimulation. This section introduces some basic properties of

population codes that are useful for understanding how the brain codes proximal

stimuli at the receptor level.

Consider a linear dimension such as position along a line. A single tuned de-

tector is only able to code the distance to the single position on the line to which

is is tuned. Fig. 2.2 illustrates this situation. In Fig. 2.2A the two stimuli S1 and

S2 at different positions along the dimension give identical responses from the de-

tector. When several detectors are used, as in Fig. 2.2B, the two stimuli will give

different responses from the three detectors which together can code the location

of the stimulus. It is clear from this example that only bounded dimensions can be

coded in this way, but it should be noted that population codes can be used also for

high-dimensional spaces and circular dimensions such as angles (cf. Forsén, 2004).

Fig. 2.3 illustrates three types of coding of a sensory dimension: local coding,

coarse coding and tile coding.

Local coding In the simplest form of code, the stimulus dimension is divided

into a number of intervals and one detector with a binary response characteristic

Wednesday, April 18, 12

Learning to Reach

sensory prediction
+

inverse model

Wednesday, April 18, 12

Learning to Reach

Wednesday, April 18, 12

Learning to Reach

ongoing interaction
Wednesday, April 18, 12

0 min

Fishing

500 ms sensory-motor delay

Wednesday, April 18, 12

Fishing
2 min

Wednesday, April 18, 12

Fishing
5 min

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

Contextual Inhibition

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

Contextual Inhibition

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

Contextual Inhibition

1

Wednesday, April 18, 12

3

2

1

32

1

Stimulus-Approach Stimulus-Response

32

Contextual Inhibition

1

Wednesday, April 18, 12

126

0 600ms
C E

T I M E

Fig. 7. Neuronal population vectors are plotted
every 10 ms vs time. C, onset of the delay; E,
end of the waiting period. The filled circle on
the abscissa indicates the time after the begin-
ning of the delay (130 ms) at which the popula-
tion vector reached statistical significance

o.,;>

C 400 ~ 800ms
TIME

Fig. 8. The length of the population vector vs time. C, onset of
delay; E, end of waiting period.

Fig. 8, showing that the signal increased gradually during
the waiting period. The population vector reached statis-
tical significance (P<0.05, modified Rayleigh test, see
Materials and methods) 130 ms after the beginning of the
delay. Figure 7 shows that at this point the population
vector was pointing in the leftward direction, similar to
the direction of the final part of the movement in the
memorized trajectory.

Directional engagement of cells during the waiting period.
The analyses above dealt with the neuronal population
vector. However, a different insight into the process un-
folding during the waiting period can be gained by ana-
lyzing the directional properties of cells engaged during
that period. Given that directionally tuned cells were
preferentially engaged during the waiting period (Table
2; see above), we analyzed the distributions of the direc-
tional influences exerted by the cells that changed activity
during each of the three 200-ms epochs of the waiting
period (see Materials and methods): if the cell activity
increased, the cell was taken to exert a unit-length direc-

tional influence in its preferred direction; if the activity
decreased, the opposite direction was taken. Frequency
distributions of these directions were then constructed
and plotted. The following can be seen in Fig. 9. First, the
directional influences of cells recruited in each of the
three epochs are widely distributed. Second, the distribu-
tion of the directional influences of cells recruited during
the first 200 ms of the waiting period is skewed towards
a leftward direction; indeed, the mean direction (Mardia
1972) of this distribution is at 186.5 ~ and it is statistically
significant (mean resultant 0.379, n=22, P<0.05, Ray-
leigh test). Third, there is a clockwise shift in the direc-
tional influences of cells recruited during the second 200
ms of the waiting period; the mean direction is now at
116.8 ~ (length of mean resultant 0.475, n=27, P<0.01,
Rayleigh test). Finally, there is a further clockwise shift in
the directional influences of cells recruited during the last
200 ms of the waiting period, but this is not statistically
significant. Of course, the ongoing weighted contribu-
tions of all these cells are combined to yield the neuronal
population vector (see above); but this analysis showed
(a) that the directional contributions by single cells were
distributed and not restricted to a narrow set of direc-
tions and (b) that there was a shifting directional engage-
ment of cells, from the leftward (+-) to the upward direc-
tion (T).

Location of recordings. The recording sites for both ani-
mals were in the crown and the exposed part of the pre-
central gyrus (Brodmann's area 4; Fig. 10).

Human studies

The mean (_+ SD) of the immediate premovement time in
the memorized movement trials was 204__38 ms. Con-

A B Fig. 9A-C. Polar plots of direc-
tional influences of single cells
during the first three successive
200-ms epochs of the waiting peri-
od. A 0-200 ms; B 200-400 ms;
C 400-600 ms. Bars are plotted in
the middle of 10 ~ directional bins.
The length of a bar indicates the
percentage of cells making direc-
tional contributions within a par-
ticular bin. The center circle repre-
sents 0 and the outer circle 5%
change

Neuronal population vectors are plotted every 10 ms vs time. C, onset of the delay; E, end of the
waiting period. The filled circle on the abscissa indicates the time after the beginning of the delay
(130 ms) at which the population vector reached statistical significance

Ashe, et al. (1993). Exp Brain Res 95:118-130

m
ov

em
en

t 1
movement 2

Wednesday, April 18, 12

Phase 1 CXA : CS + US

Phase 2 CXA : CS

Test A CXA : CS → no-CR

Test B CXB : CS → CR

Extinction does not transfer to a new context (Bouton 1991, 1992)

Context Effects

Wednesday, April 18, 12

Contextual Inhibition

Wednesday, April 18, 12

Three Learning Conditions

Rew better than
expected

maximal
generalization

Rew worse than
expected

contextual
exception

Pun bad minimal
generalization

Wednesday, April 18, 12

S aexcitation

Q(c, s, aj)
Wednesday, April 18, 12

S a

C

suppression

excitation

Q(c, s, aj)
Wednesday, April 18, 12

S a

C

suppression

excitation

Q(c, s, aj)

inhibition

Wednesday, April 18, 12

S a

C

suppression

excitation

Q(c, s, aj)

inhibition

Rew

Rew

Pun

Wednesday, April 18, 12

S a

C

suppression

excitation

Q(c, s, aj)

GENERALIZATION

inhibition

Rew

Rew

Pun

Wednesday, April 18, 12

S a

C

suppression

excitation

Q(c, s, aj)

GENERALIZATION

SPECIALIZATION

inhibition

Rew

Rew

Pun

Wednesday, April 18, 12

S a

C

suppression

excitation

Q(c, s, aj)

GENERALIZATION

SPECIALIZATION

inhibition

Rew

Rew

PunSPECIFIC

Wednesday, April 18, 12

State & Action
Evaluation

Sensory Coding

Action Selection

Wednesday, April 18, 12

ACTOR CRITICPUNISH

RL-CORE

Σ Σ

actor target critic target

potential
actions

selected
action

Sensory Coding

Action Selection

Wednesday, April 18, 12

ACTOR CRITICPUNISH

RL-CORE

Σ Σ

actor target critic target

potential
actions

selected
action

Δ = 0

Δ = 1

Δ = 2

Sensory Coding

Action Selection

Wednesday, April 18, 12

ACTOR CRITICPUNISH

RL-CORE

SELECT

MERGE

INV

D

Σ Σ

actor target critic target

selected action

potential
actions

selected
action

obstacles

co
llis

io
n

locationloc
ati

on

Δ = 0

Δ = 1

Δ = 2

WORLD

Wednesday, April 18, 12

Wednesday, April 18, 12

(Balkenius and Morén, 2000, Morén, 2002) as well as
in models of categorization (Balkenius and Winberg,
2004). The formulation of ContextQ described here
is similar to that used before but includes a scaling
factor for inhibitory learning that has not been pre-
viously described.

Let each state be represented by a state vector s =
〈s0, s1, . . . , sn〉 and let {a0, a1, . . . , am} be a discrete
set of actions. The Q-function is estimated as,

Q(s, aj) =
n

∑

i=0

siwij ,

and the update rule is

w
(t+1)
ij = w

(t)
ij + α

siaj

|s|
∆Qt.

where aj = 1 for the selected action j. That is,
each weight is updated according to the error in the
estimated value multiplied with the value of the state
component si. This means that only components of
the state that contributed to the selected action will
be updated.

Let the context be described by a vector c =
〈c0, c1, . . . , cp〉. We can reformulate the linear esti-
mator above in the following way by including addi-
tional weights uijk which relate each association wij

to the context ck:

Q(c, s, aj) =
n

∑

i=0

siwijIij ,

where,

Iij =
p

∏

k=0

(1 − ckuijk).

In neural network terms, Iij can be seen as shunt-
ing inhibition from the context of the association
from the state to the action. We now need to consider
how the learning rule should be changed to reflect the
new context sensitive estimator.

When all uijk = 0, the algorithm work exactly as
before which implies that the original equation can
still be used for the case when ∆Qt > 0. This will
result in initial learning that is totally independent
of the context. On the other hand, when ∆Qt < 0,
instead of changing the weights wij , we increase the
inhibition from the current context according to

u
(t+1)
ijk = u

(t)
ijk − β(1 − u

(t)
ijk)

siajck

|s|wij
∆Qt.

In other words, the inhibition from the current
context will increase to the association between the
current state and the selected action when the ac-
tual reinforcement is lower that the expected rein-
forcement. Once the weights wij have reached their

maximal values, all learning will take place in uijk.
Also, if the appropriate action within a fixed con-
text changes, it may become necessary to decrease
the values of uijk. The solution to these problems is
to allow changes in both directions of both wij and
uijk, but to modulate it with the sign of ∆Qt.

The simplest scheme is to use two learning rate
constants α+ and β+, which are used when ∆Qt > 0,
and two constants α− and β−, which are used when
∆Qt < 0, and to update both wij and uijk at each
time step.

3. Simulations

A typical reinforcement learning problem has a mul-
tidimensional state space. This makes it difficult to
visualize the problem in a way that is easy to com-
prehend. Therefore a navigation task through a two-
dimensional maze is often chosen as the basic test
environment since each state can be represented by
a physical location.

When the state space is visualized as a two dimen-
sional surface, the solution can be described as a path
from the start state to the goal state. Initially the
agent has no knowledge of the state space. There-
fore, the first time the agent enters the maze it has
to search it through to find the goal. It is important
to note that the two-dimensional layout of the state-
space is not available to the agent. Our intuitions
about the expected behavior can thus be mislead-
ing. Nevertheless, a maze is useful visualization of a
state-space and we have chosen a set of mazes we call
17T4U that illustrates different strengths and weak-
nesses of ContextQ (Fig. 2 and Fig. 4). The mazes
superficially looks like the letter in the name of the
set. In addition, we tested the algorithm on a large
maze with a lot of repeated structures where it would
be likely that the benefits of generalization would be
seen more clearly (Fig. 3).

Parameters The parameters for the two models
were set as follows. For the tabular Q-learning im-
plementation, the learning rate was set to 0.2 and
the discount was 0.9. The initial weights were set
to 0.1. Epsilon-greedy was used for action selection
with ε = 0.05.

For ContextQ, the learning rates were α+ = 0.1,
β+ = 0.1 and α− = 0.0, β+ = 0.7. The discount was
set to 0.9 and the initial weights were all 0.1. Boltz-
mann selection was used for action selection with a
temperature that gradually decreased from 0.05 to
0.005.

Stimulus Coding To make ContextQ useful, it is
necessary to code the input and context in a suit-
able way. Since we want the algorithm to generalize
between similar states it is necessary that the state

(Balkenius and Morén, 2000, Morén, 2002) as well as
in models of categorization (Balkenius and Winberg,
2004). The formulation of ContextQ described here
is similar to that used before but includes a scaling
factor for inhibitory learning that has not been pre-
viously described.

Let each state be represented by a state vector s =
〈s0, s1, . . . , sn〉 and let {a0, a1, . . . , am} be a discrete
set of actions. The Q-function is estimated as,

Q(s, aj) =
n

∑

i=0

siwij ,

and the update rule is

w
(t+1)
ij = w

(t)
ij + α

siaj

|s|
∆Qt.

where aj = 1 for the selected action j. That is,
each weight is updated according to the error in the
estimated value multiplied with the value of the state
component si. This means that only components of
the state that contributed to the selected action will
be updated.

Let the context be described by a vector c =
〈c0, c1, . . . , cp〉. We can reformulate the linear esti-
mator above in the following way by including addi-
tional weights uijk which relate each association wij

to the context ck:

Q(c, s, aj) =
n

∑

i=0

siwijIij ,

where,

Iij =
p

∏

k=0

(1 − ckuijk).

In neural network terms, Iij can be seen as shunt-
ing inhibition from the context of the association
from the state to the action. We now need to consider
how the learning rule should be changed to reflect the
new context sensitive estimator.

When all uijk = 0, the algorithm work exactly as
before which implies that the original equation can
still be used for the case when ∆Qt > 0. This will
result in initial learning that is totally independent
of the context. On the other hand, when ∆Qt < 0,
instead of changing the weights wij , we increase the
inhibition from the current context according to

u
(t+1)
ijk = u

(t)
ijk − β(1 − u

(t)
ijk)

siajck

|s|wij
∆Qt.

In other words, the inhibition from the current
context will increase to the association between the
current state and the selected action when the ac-
tual reinforcement is lower that the expected rein-
forcement. Once the weights wij have reached their

maximal values, all learning will take place in uijk.
Also, if the appropriate action within a fixed con-
text changes, it may become necessary to decrease
the values of uijk. The solution to these problems is
to allow changes in both directions of both wij and
uijk, but to modulate it with the sign of ∆Qt.

The simplest scheme is to use two learning rate
constants α+ and β+, which are used when ∆Qt > 0,
and two constants α− and β−, which are used when
∆Qt < 0, and to update both wij and uijk at each
time step.

3. Simulations

A typical reinforcement learning problem has a mul-
tidimensional state space. This makes it difficult to
visualize the problem in a way that is easy to com-
prehend. Therefore a navigation task through a two-
dimensional maze is often chosen as the basic test
environment since each state can be represented by
a physical location.

When the state space is visualized as a two dimen-
sional surface, the solution can be described as a path
from the start state to the goal state. Initially the
agent has no knowledge of the state space. There-
fore, the first time the agent enters the maze it has
to search it through to find the goal. It is important
to note that the two-dimensional layout of the state-
space is not available to the agent. Our intuitions
about the expected behavior can thus be mislead-
ing. Nevertheless, a maze is useful visualization of a
state-space and we have chosen a set of mazes we call
17T4U that illustrates different strengths and weak-
nesses of ContextQ (Fig. 2 and Fig. 4). The mazes
superficially looks like the letter in the name of the
set. In addition, we tested the algorithm on a large
maze with a lot of repeated structures where it would
be likely that the benefits of generalization would be
seen more clearly (Fig. 3).

Parameters The parameters for the two models
were set as follows. For the tabular Q-learning im-
plementation, the learning rate was set to 0.2 and
the discount was 0.9. The initial weights were set
to 0.1. Epsilon-greedy was used for action selection
with ε = 0.05.

For ContextQ, the learning rates were α+ = 0.1,
β+ = 0.1 and α− = 0.0, β+ = 0.7. The discount was
set to 0.9 and the initial weights were all 0.1. Boltz-
mann selection was used for action selection with a
temperature that gradually decreased from 0.05 to
0.005.

Stimulus Coding To make ContextQ useful, it is
necessary to code the input and context in a suit-
able way. Since we want the algorithm to generalize
between similar states it is necessary that the state

(Balkenius and Morén, 2000, Morén, 2002) as well as
in models of categorization (Balkenius and Winberg,
2004). The formulation of ContextQ described here
is similar to that used before but includes a scaling
factor for inhibitory learning that has not been pre-
viously described.

Let each state be represented by a state vector s =
〈s0, s1, . . . , sn〉 and let {a0, a1, . . . , am} be a discrete
set of actions. The Q-function is estimated as,

Q(s, aj) =
n

∑

i=0

siwij ,

and the update rule is

w
(t+1)
ij = w

(t)
ij + α

siaj

|s|
∆Qt.

where aj = 1 for the selected action j. That is,
each weight is updated according to the error in the
estimated value multiplied with the value of the state
component si. This means that only components of
the state that contributed to the selected action will
be updated.

Let the context be described by a vector c =
〈c0, c1, . . . , cp〉. We can reformulate the linear esti-
mator above in the following way by including addi-
tional weights uijk which relate each association wij

to the context ck:

Q(c, s, aj) =
n

∑

i=0

siwijIij ,

where,

Iij =
p

∏

k=0

(1 − ckuijk).

In neural network terms, Iij can be seen as shunt-
ing inhibition from the context of the association
from the state to the action. We now need to consider
how the learning rule should be changed to reflect the
new context sensitive estimator.

When all uijk = 0, the algorithm work exactly as
before which implies that the original equation can
still be used for the case when ∆Qt > 0. This will
result in initial learning that is totally independent
of the context. On the other hand, when ∆Qt < 0,
instead of changing the weights wij , we increase the
inhibition from the current context according to

u
(t+1)
ijk = u

(t)
ijk − β(1 − u

(t)
ijk)

siajck

|s|wij
∆Qt.

In other words, the inhibition from the current
context will increase to the association between the
current state and the selected action when the ac-
tual reinforcement is lower that the expected rein-
forcement. Once the weights wij have reached their

maximal values, all learning will take place in uijk.
Also, if the appropriate action within a fixed con-
text changes, it may become necessary to decrease
the values of uijk. The solution to these problems is
to allow changes in both directions of both wij and
uijk, but to modulate it with the sign of ∆Qt.

The simplest scheme is to use two learning rate
constants α+ and β+, which are used when ∆Qt > 0,
and two constants α− and β−, which are used when
∆Qt < 0, and to update both wij and uijk at each
time step.

3. Simulations

A typical reinforcement learning problem has a mul-
tidimensional state space. This makes it difficult to
visualize the problem in a way that is easy to com-
prehend. Therefore a navigation task through a two-
dimensional maze is often chosen as the basic test
environment since each state can be represented by
a physical location.

When the state space is visualized as a two dimen-
sional surface, the solution can be described as a path
from the start state to the goal state. Initially the
agent has no knowledge of the state space. There-
fore, the first time the agent enters the maze it has
to search it through to find the goal. It is important
to note that the two-dimensional layout of the state-
space is not available to the agent. Our intuitions
about the expected behavior can thus be mislead-
ing. Nevertheless, a maze is useful visualization of a
state-space and we have chosen a set of mazes we call
17T4U that illustrates different strengths and weak-
nesses of ContextQ (Fig. 2 and Fig. 4). The mazes
superficially looks like the letter in the name of the
set. In addition, we tested the algorithm on a large
maze with a lot of repeated structures where it would
be likely that the benefits of generalization would be
seen more clearly (Fig. 3).

Parameters The parameters for the two models
were set as follows. For the tabular Q-learning im-
plementation, the learning rate was set to 0.2 and
the discount was 0.9. The initial weights were set
to 0.1. Epsilon-greedy was used for action selection
with ε = 0.05.

For ContextQ, the learning rates were α+ = 0.1,
β+ = 0.1 and α− = 0.0, β+ = 0.7. The discount was
set to 0.9 and the initial weights were all 0.1. Boltz-
mann selection was used for action selection with a
temperature that gradually decreased from 0.05 to
0.005.

Stimulus Coding To make ContextQ useful, it is
necessary to code the input and context in a suit-
able way. Since we want the algorithm to generalize
between similar states it is necessary that the state

(Balkenius and Morén, 2000, Morén, 2002) as well as
in models of categorization (Balkenius and Winberg,
2004). The formulation of ContextQ described here
is similar to that used before but includes a scaling
factor for inhibitory learning that has not been pre-
viously described.

Let each state be represented by a state vector s =
〈s0, s1, . . . , sn〉 and let {a0, a1, . . . , am} be a discrete
set of actions. The Q-function is estimated as,

Q(s, aj) =
n

∑

i=0

siwij ,

and the update rule is

w
(t+1)
ij = w

(t)
ij + α

siaj

|s|
∆Qt.

where aj = 1 for the selected action j. That is,
each weight is updated according to the error in the
estimated value multiplied with the value of the state
component si. This means that only components of
the state that contributed to the selected action will
be updated.

Let the context be described by a vector c =
〈c0, c1, . . . , cp〉. We can reformulate the linear esti-
mator above in the following way by including addi-
tional weights uijk which relate each association wij

to the context ck:

Q(c, s, aj) =
n

∑

i=0

siwijIij ,

where,

Iij =
p

∏

k=0

(1 − ckuijk).

In neural network terms, Iij can be seen as shunt-
ing inhibition from the context of the association
from the state to the action. We now need to consider
how the learning rule should be changed to reflect the
new context sensitive estimator.

When all uijk = 0, the algorithm work exactly as
before which implies that the original equation can
still be used for the case when ∆Qt > 0. This will
result in initial learning that is totally independent
of the context. On the other hand, when ∆Qt < 0,
instead of changing the weights wij , we increase the
inhibition from the current context according to

u
(t+1)
ijk = u

(t)
ijk − β(1 − u

(t)
ijk)

siajck

|s|wij
∆Qt.

In other words, the inhibition from the current
context will increase to the association between the
current state and the selected action when the ac-
tual reinforcement is lower that the expected rein-
forcement. Once the weights wij have reached their

maximal values, all learning will take place in uijk.
Also, if the appropriate action within a fixed con-
text changes, it may become necessary to decrease
the values of uijk. The solution to these problems is
to allow changes in both directions of both wij and
uijk, but to modulate it with the sign of ∆Qt.

The simplest scheme is to use two learning rate
constants α+ and β+, which are used when ∆Qt > 0,
and two constants α− and β−, which are used when
∆Qt < 0, and to update both wij and uijk at each
time step.

3. Simulations

A typical reinforcement learning problem has a mul-
tidimensional state space. This makes it difficult to
visualize the problem in a way that is easy to com-
prehend. Therefore a navigation task through a two-
dimensional maze is often chosen as the basic test
environment since each state can be represented by
a physical location.

When the state space is visualized as a two dimen-
sional surface, the solution can be described as a path
from the start state to the goal state. Initially the
agent has no knowledge of the state space. There-
fore, the first time the agent enters the maze it has
to search it through to find the goal. It is important
to note that the two-dimensional layout of the state-
space is not available to the agent. Our intuitions
about the expected behavior can thus be mislead-
ing. Nevertheless, a maze is useful visualization of a
state-space and we have chosen a set of mazes we call
17T4U that illustrates different strengths and weak-
nesses of ContextQ (Fig. 2 and Fig. 4). The mazes
superficially looks like the letter in the name of the
set. In addition, we tested the algorithm on a large
maze with a lot of repeated structures where it would
be likely that the benefits of generalization would be
seen more clearly (Fig. 3).

Parameters The parameters for the two models
were set as follows. For the tabular Q-learning im-
plementation, the learning rate was set to 0.2 and
the discount was 0.9. The initial weights were set
to 0.1. Epsilon-greedy was used for action selection
with ε = 0.05.

For ContextQ, the learning rates were α+ = 0.1,
β+ = 0.1 and α− = 0.0, β+ = 0.7. The discount was
set to 0.9 and the initial weights were all 0.1. Boltz-
mann selection was used for action selection with a
temperature that gradually decreased from 0.05 to
0.005.

Stimulus Coding To make ContextQ useful, it is
necessary to code the input and context in a suit-
able way. Since we want the algorithm to generalize
between similar states it is necessary that the state

(Balkenius and Morén, 2000, Morén, 2002) as well as
in models of categorization (Balkenius and Winberg,
2004). The formulation of ContextQ described here
is similar to that used before but includes a scaling
factor for inhibitory learning that has not been pre-
viously described.

Let each state be represented by a state vector s =
〈s0, s1, . . . , sn〉 and let {a0, a1, . . . , am} be a discrete
set of actions. The Q-function is estimated as,

Q(s, aj) =
n

∑

i=0

siwij ,

and the update rule is

w
(t+1)
ij = w

(t)
ij + α

siaj

|s|
∆Qt.

where aj = 1 for the selected action j. That is,
each weight is updated according to the error in the
estimated value multiplied with the value of the state
component si. This means that only components of
the state that contributed to the selected action will
be updated.

Let the context be described by a vector c =
〈c0, c1, . . . , cp〉. We can reformulate the linear esti-
mator above in the following way by including addi-
tional weights uijk which relate each association wij

to the context ck:

Q(c, s, aj) =
n

∑

i=0

siwijIij ,

where,

Iij =
p

∏

k=0

(1 − ckuijk).

In neural network terms, Iij can be seen as shunt-
ing inhibition from the context of the association
from the state to the action. We now need to consider
how the learning rule should be changed to reflect the
new context sensitive estimator.

When all uijk = 0, the algorithm work exactly as
before which implies that the original equation can
still be used for the case when ∆Qt > 0. This will
result in initial learning that is totally independent
of the context. On the other hand, when ∆Qt < 0,
instead of changing the weights wij , we increase the
inhibition from the current context according to

u
(t+1)
ijk = u

(t)
ijk − β(1 − u

(t)
ijk)

siajck

|s|wij
∆Qt.

In other words, the inhibition from the current
context will increase to the association between the
current state and the selected action when the ac-
tual reinforcement is lower that the expected rein-
forcement. Once the weights wij have reached their

maximal values, all learning will take place in uijk.
Also, if the appropriate action within a fixed con-
text changes, it may become necessary to decrease
the values of uijk. The solution to these problems is
to allow changes in both directions of both wij and
uijk, but to modulate it with the sign of ∆Qt.

The simplest scheme is to use two learning rate
constants α+ and β+, which are used when ∆Qt > 0,
and two constants α− and β−, which are used when
∆Qt < 0, and to update both wij and uijk at each
time step.

3. Simulations

A typical reinforcement learning problem has a mul-
tidimensional state space. This makes it difficult to
visualize the problem in a way that is easy to com-
prehend. Therefore a navigation task through a two-
dimensional maze is often chosen as the basic test
environment since each state can be represented by
a physical location.

When the state space is visualized as a two dimen-
sional surface, the solution can be described as a path
from the start state to the goal state. Initially the
agent has no knowledge of the state space. There-
fore, the first time the agent enters the maze it has
to search it through to find the goal. It is important
to note that the two-dimensional layout of the state-
space is not available to the agent. Our intuitions
about the expected behavior can thus be mislead-
ing. Nevertheless, a maze is useful visualization of a
state-space and we have chosen a set of mazes we call
17T4U that illustrates different strengths and weak-
nesses of ContextQ (Fig. 2 and Fig. 4). The mazes
superficially looks like the letter in the name of the
set. In addition, we tested the algorithm on a large
maze with a lot of repeated structures where it would
be likely that the benefits of generalization would be
seen more clearly (Fig. 3).

Parameters The parameters for the two models
were set as follows. For the tabular Q-learning im-
plementation, the learning rate was set to 0.2 and
the discount was 0.9. The initial weights were set
to 0.1. Epsilon-greedy was used for action selection
with ε = 0.05.

For ContextQ, the learning rates were α+ = 0.1,
β+ = 0.1 and α− = 0.0, β+ = 0.7. The discount was
set to 0.9 and the initial weights were all 0.1. Boltz-
mann selection was used for action selection with a
temperature that gradually decreased from 0.05 to
0.005.

Stimulus Coding To make ContextQ useful, it is
necessary to code the input and context in a suit-
able way. Since we want the algorithm to generalize
between similar states it is necessary that the state

(Balkenius and Morén, 2000, Morén, 2002) as well as
in models of categorization (Balkenius and Winberg,
2004). The formulation of ContextQ described here
is similar to that used before but includes a scaling
factor for inhibitory learning that has not been pre-
viously described.

Let each state be represented by a state vector s =
〈s0, s1, . . . , sn〉 and let {a0, a1, . . . , am} be a discrete
set of actions. The Q-function is estimated as,

Q(s, aj) =
n

∑

i=0

siwij ,

and the update rule is

w
(t+1)
ij = w

(t)
ij + α

siaj

|s|
∆Qt.

where aj = 1 for the selected action j. That is,
each weight is updated according to the error in the
estimated value multiplied with the value of the state
component si. This means that only components of
the state that contributed to the selected action will
be updated.

Let the context be described by a vector c =
〈c0, c1, . . . , cp〉. We can reformulate the linear esti-
mator above in the following way by including addi-
tional weights uijk which relate each association wij

to the context ck:

Q(c, s, aj) =
n

∑

i=0

siwijIij ,

where,

Iij =
p

∏

k=0

(1 − ckuijk).

In neural network terms, Iij can be seen as shunt-
ing inhibition from the context of the association
from the state to the action. We now need to consider
how the learning rule should be changed to reflect the
new context sensitive estimator.

When all uijk = 0, the algorithm work exactly as
before which implies that the original equation can
still be used for the case when ∆Qt > 0. This will
result in initial learning that is totally independent
of the context. On the other hand, when ∆Qt < 0,
instead of changing the weights wij , we increase the
inhibition from the current context according to

u
(t+1)
ijk = u

(t)
ijk − β(1 − u

(t)
ijk)

siajck

|s|wij
∆Qt.

In other words, the inhibition from the current
context will increase to the association between the
current state and the selected action when the ac-
tual reinforcement is lower that the expected rein-
forcement. Once the weights wij have reached their

maximal values, all learning will take place in uijk.
Also, if the appropriate action within a fixed con-
text changes, it may become necessary to decrease
the values of uijk. The solution to these problems is
to allow changes in both directions of both wij and
uijk, but to modulate it with the sign of ∆Qt.

The simplest scheme is to use two learning rate
constants α+ and β+, which are used when ∆Qt > 0,
and two constants α− and β−, which are used when
∆Qt < 0, and to update both wij and uijk at each
time step.

3. Simulations

A typical reinforcement learning problem has a mul-
tidimensional state space. This makes it difficult to
visualize the problem in a way that is easy to com-
prehend. Therefore a navigation task through a two-
dimensional maze is often chosen as the basic test
environment since each state can be represented by
a physical location.

When the state space is visualized as a two dimen-
sional surface, the solution can be described as a path
from the start state to the goal state. Initially the
agent has no knowledge of the state space. There-
fore, the first time the agent enters the maze it has
to search it through to find the goal. It is important
to note that the two-dimensional layout of the state-
space is not available to the agent. Our intuitions
about the expected behavior can thus be mislead-
ing. Nevertheless, a maze is useful visualization of a
state-space and we have chosen a set of mazes we call
17T4U that illustrates different strengths and weak-
nesses of ContextQ (Fig. 2 and Fig. 4). The mazes
superficially looks like the letter in the name of the
set. In addition, we tested the algorithm on a large
maze with a lot of repeated structures where it would
be likely that the benefits of generalization would be
seen more clearly (Fig. 3).

Parameters The parameters for the two models
were set as follows. For the tabular Q-learning im-
plementation, the learning rate was set to 0.2 and
the discount was 0.9. The initial weights were set
to 0.1. Epsilon-greedy was used for action selection
with ε = 0.05.

For ContextQ, the learning rates were α+ = 0.1,
β+ = 0.1 and α− = 0.0, β+ = 0.7. The discount was
set to 0.9 and the initial weights were all 0.1. Boltz-
mann selection was used for action selection with a
temperature that gradually decreased from 0.05 to
0.005.

Stimulus Coding To make ContextQ useful, it is
necessary to code the input and context in a suit-
able way. Since we want the algorithm to generalize
between similar states it is necessary that the state

Learning Algorithm

Wednesday, April 18, 12

Maze Accumulated Extra Steps

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80

Wednesday, April 18, 12

Maze Accumulated Extra Steps

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Wednesday, April 18, 12

Figure 3: A large maze used to illustrate the ability of
ContextQ to generalize behavior in an environment with a
lot of repeated structure. The start location is in the upper
left corner and the goal is in the bottom right corner.

coding reflects such a similarity. We chose to code
each state in a vector of 18 elements, where each ele-
ment codes for the presence or absence of free space
at each of nine locations around the current position
of the agent in the maze. A 1 was used to indicate
free space and 0 was used to indicate a wall for the
first nine elements. The following elements contained
the same information inverted. The current location
was always coded as a 0.

The current location in the maze was used as con-
textual input. This is consistent with the idea that
exceptions should be learned about particular loca-
tions in the mazes.

Simulations Each maze was tested 60 times for
each of the models. The average number of extra
steps needed to reach the goal for each trial were
recorded. For example, if the shortest path from the
start to the goal is ten steps and the model needed
twelve, this would constitute two extra steps. For
the large maze. The average of 30 runs was used
instead.

4. Results

4.1 The Narrow Mazes

The 1-Maze The 1-Maze is a straight corridor
from the start to the goal (Fig. 2). This maze demon-
strates clearly the power of generalization in the Con-
textQ algorithm. On the first trial, the random walk

is used to move from the start to the goal. Once the
agent has been rewarded the action of moving to the
right is directly generalized to all location in the cor-
ridor. As a result, the agent will perform perfectly
after a single trial. Tabular Q-learning, on the other
hand, will not be able to generalize and will slowly
learn to use the same action at all locations.

The 7-Maze The 7-Maze is a simple maze with
one corner (Fig. 2). Here, two different actions are
need. First, the agent needs to move to the left and
after the corner it needs to move upwards until it
reaches the goal. To Q-learning, there is little dif-
ference between this maze and Maze 1 since in both
cases ten individual actions need to be learned to
go from the start to the goal. To ContextQ, on the
other hand, the situation is entirely different. The
first trial is again random walk until the agent learns
to move upwards after it has been rewarded. Dur-
ing the second trial, this action will be incorrectly
generalized to the horizontal corridor since this is
the only action that has been rewarded so far. This
will lead to an extinction phase where this action
will become inhibited within the horizontal arm of
the maze. Once this incorrect generalization is com-
pletely inhibited, the agent will move toward the ver-
tical arm where the generalization is still valid. It
will subsequently move directly to the goal through
the vertical part of the maze. At the same time, the
action of moving to the right in the horizontal part
of the maze will be reinforced and the agent will be-
have perfectly in the maze. The action of moving to
the right will have been generalized to all location in
the horizontal part and the action of moving upward
has been generalized to all locations in the vertical
part.

The T-Maze The T-Maze was included in the set
since it is common maze in many studies of reinforce-
ment learning. ContextQ is very quick to learn and
only requires a few trials to learn the maze perfectly.
The explanation is the same as in the 7-Maze.

The 4-Maze Since we wanted to test what would
happen in a situation that appeared to be optimally
bad for ContextQ, we studied the behavior of the al-
gorithm in a 4-Maze. Each time ContextQ reaches
the goal, the action of moving to the right will be
reinforced. This will lead to an ever increasing ten-
dency for the agent to not turn upward at the choice
point. Instead it will continue right into the dead
end. Since there is no reward at the end of the lower
arm of the maze, the move right action will be grad-
ually extinguished until the agent takes the upper
path again. However, once the agent reaches the
goal and gets rewarded again, it will again choose to

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 20 40 60 80 100

Figure 5: In the large maze, the ability of ContextQ to
generalize from one part of the maze to another is very
evident..

move to the right at the choice point since the re-
ward has counteracted the previous inhibition. This
is thus a very hard maze for ContextQ to solve. De-
spite this, ContextQ is slightly faster than Q-learning
at this maze. The disadvantage of the continuously
repeated incorrect generalization is smaller than the
gain from the correct generalizations along the cor-
ridors.

The U-Maze The U-Maze was designed as a more
realistic example with a number of dead ends where
ContextQ could get stuck. Yet, ContextQ learns the
maze at approximately the same time as tabular Q-
learning.

4.2 The Wide Mazes

The mazes describe above are built from narrow cor-
ridors where it is obvious that there is a single good
generalization. To test if the advantages of ContextQ
would carry over to less obvious situations, we de-
signed wide version of the mazes where the corridors
had a width of two squares instead of one (Fig. 4).
In all cases, the goals were placed as to reward the
least useful action for ContextQ. ContextQ was able
to learn all mazes correctly in less time steps than
tabular Q-learning for all mazes but the last(Fig. 4).
The wide U-maze is hard for ContextQ to learn since
there is very little sensory information to use during
learning. Despite this, the performance is not much
worse than tabular Q-learning.

4.3 The Large Maze

The difference between ContextQ and tabular Q-
learning is most clearly seen in the large maze
(Fig. 5). The behavior of ContexQ converges to an
optimal behavior in very few trials while tabular Q-
learning shows no tendency to converge even after
400000 steps. Unlike the previous mazes, the large
maze contains plenty of opportunity for successful
generalization and this is what gives ContextQ a
great advantage in this maze.

5. Discussion

We have run simulations of the ContextQ algorithm,
which uses generalization and specialization to learn
a behavior, on a number of maze problems to com-
pare it with standard Q-learning.

The ContextQ algorithm performed better than
tabular Q-learning in some simulations with narrow
corridors which shows the ability to generalize can
be used to great advantage. Even though many of
the mazes tested were selected to be to the disad-
vantage of ContextQ, the algorithm is still on par
with standard Q-learning. The advantages of correct
generalizations overshadow the disadvantages of the
incorrect ones. This gives support for the view that
it is efficient to generalize maximally from previous
experiences and then gradually specialize in specific
contexts. For the wide mazes, ContextQ was as fast
as or faster than tabular Q-learning.

It can be argued that there exist more efficient
forms of Q-learning and that the comparison is not
fair. For example, by using an eligibility trace, Q-
learning will learn much faster. This is most likely
also the case for ContextQ and here we only wanted
to compare the minimal implementations of the two
algorithms. In the future, we want to add further
mechanisms to both algorithms to get more efficient
learning systems.

Another difference between the two models is that
tabular Q-learning can make use of initially posi-
tive weights to explore the environment efficiently
(Koenig and Simmons, 1996). Such a strategy is not
available to ContextQ as there is no weight specific
to each state initially. We are currently investigating
how context dependence can be included also in an
actor-critic architecture, where such a mechanism is
easier to implement since the generalization can take
place in the actor while state-spcific values can be
learned by the critic.

In particular, we want to test the effect of a hi-
erarchical state-space coding for the spatial context
(Balkenius, 1996). Presumably, this could lead to
much faster specialization in the 4-maze, since the
whole corridor could be treated as a single context.
We also want to add eligibility traces to the algo-
rithm to see if this is as efficient for ContextQ as for
the standard case.

What are the implications for epigenetic robotics
for the algorithm described above? For a robot that
needs to develop autonomously, it will be necessary
to learn a large number of behaviors in different sit-
uations. Such learning can be made much faster if
the robot generalizes from previous instances during
learning. The interplay between generalization based
on the current sensory information coded in the state
and the specialization based on contextual inhibition
has a number of advantages.

First, the generalization is maximal. This means

A More Complex Example

Wednesday, April 18, 12

9

from catastrophic forgetting in many kinds of
artificial neural networks (French, 1991). This

simulation was created to demonstrate how the

functionality of Context-Q can be used to deal with

this problem.

This time not one but three mazes were used. When

the agent had successfully found the way to the

goal 50 times, it was moved to the next maze. This

way the artificial neural networks had to store
information about all three mazes simultaneously.

Naturally this information would often be

contradicting, depending on which maze the agent

was in at the moment. When the agent had visited

the last maze it was moved back to the first one

again. This was then repeated until the agent had

trained in each maze a total of three times. This was

done to see how much of the information gathered

was destroyed because of catastrophic forgetting.

The actual training of the implementation using a

regular linear network was performed just like in

the previous simulations. When the experiment was

repeated with Context-Q, the way it was undertaken

was different from the previous simulations. This

time the context input was not the location of the

agent. This information was fed to the network as

stimulus data. Instead, the index number of the

current maze was used as context data. This way

Context-Q could separate information gathered

from different mazes but lost the ability to

generalize between states.

Just like in the previous simulations, the learning

rate to strengthen associations was set to 0.5 and the

learning rate to weaken them was set to 0 when

Context-Q was tested. The learning rate to create

and remove inhibitions of associations was also set

to 0.5. During the test of the implementation using

a linear network the learning rate was also set to

0.5. Also, since it was possible to find multiple

paths from start to goal in two of these mazes,
epsilon greedy was activated with an epsilon value

of 2%.

Q-Learning with a regular linear network

10

100

1000

10000

100000

0 50 100 150 200 250 300 350 400 450

Context-Q

10

100

1000

10000

100000

0 50 100 150 200 250 300 350 400 450

Figure 13: The y-axis indicates the number of

moves required for the agent to reach the goal
state and the x-axis the number of times the
agent has found a way from start to goal. After
50 successful attempts the agent enters the next
maze. When training has been completed in the
third maze, the agent enters the first one again.
The numbers shown are the average of 30 runs.

Since the implementation using a regular linear

network received no information of which maze it

was in at the moment, what was learned in one

maze would lead to mistakes in the next one. Parts

of the information about the old maze were

inevitably destroyed while learning about the new

maze. Since a lot of what was learned about each

maze during the first visit was erased by training in

the other two mazes, performance was only slightly

better during the second and third visit.

Without the ability to generalize between sates the

way Context-Q was trained was almost identical to

that of the implementation using a regular linear

network while in the first maze. As soon as the

agent entered the second maze, the context

connections were used to suppress any association

not appropriate in the new maze. Since the learning

rate to weaken these associations was set to zero,

they were still intact when the agent returned to the

first maze. As can be seen in figure 13 this made it
possible for the agent to retain its knowledge of all

three mazes and therefore be able to find its way

with only a minimal amount of relearning. The

spikes that can be seen in the statistics for Context-

Q, is caused when epsilon greedy overrides the

decision made by the network. When a path has

been found this will usually cause the agent to

make mistakes.

S

G

S G

 S

G

Figure12: In order to better visualize Context-
Q’s capability to deal with catastrophic
forgetting, the same network was trained to
solve three different mazes. These were made
so that the state vector for each maze would
overlap the other two in several states, making
sure training in one maze would affect what
was learned in the other two.

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

S

G

S G

 S

G

Winberg, 2005

Context Prevents Catastrophic Forgetting

Wednesday, April 18, 12

Four Algorithms

Q ContextQ ContextAC ContextACP

Q(s, a) Q(c, s, a) Q(c, s, a)
V(s)

Q(c, s, a)
V(s)

P(s, a)

‘stimulus
generalization’

contextual
specialization

progress separate
from state that
controls action

learns to avoid doing
bad things

Wednesday, April 18, 12

Four Algorithms

Q ContextQ ContextAC ContextACP

Q(s, a) Q(c, s, a) Q(c, s, a)
V(s)

Q(c, s, a)
V(s)

P(s, a)

‘stimulus
generalization’

contextual
specialization

progress separate
from state that
controls action

learns to avoid doing
bad things

general less general

Wednesday, April 18, 12

Stimulus-Approach

Stimulus-Response

Contextual Inhibition

Wednesday, April 18, 12

Wednesday, April 18, 12

