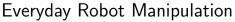
Cognition-Enabled Robot Control for the Realization of Home Chore Task Intelligence

Michael Beetz

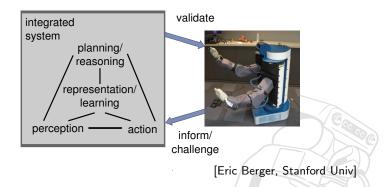
Intelligent Autonomous Systems Technische Universität München

LCCC & Rosetta Symposium on Robot Skill Learning and Cognition April 18, 2012



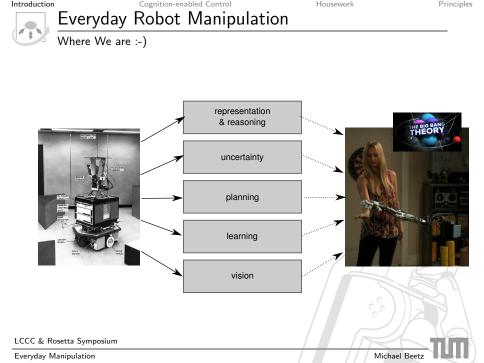
robohé

Cognition-enabled Control


Housework

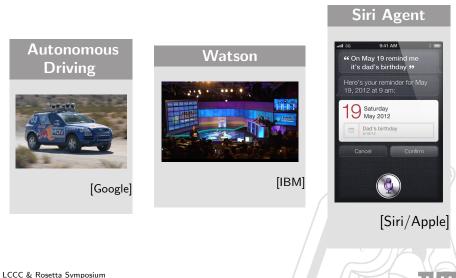
Principles

Where we want to go


Nils Nilsson's challenge: a robot that can do what is reasonable to expect from it given its sensors and actuators

Robotic roadmaps and white papers: robot (co-)workers, autonomous robot assistants, robot companions

LCCC & Rosetta Symposium


Cognition-enabled Control

Housework

Principles

What we can be proud of ...

Everyday Manipulation

Cognition-enabled Control

Housework

Principles

Everyday manipulation is really hard

Picking up an object

decide on

- where to stand?
- which hand(s) to use?
- how to reach?
- which grasp?
- where to grasp?
- how much force?
- how much lift force?
- how to lift?
- how to hold?

LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

Everyday manipulation is really hard

Picking up an object

decide on

- where to stand?
- which hand(s) to use?
- how to reach?
- which grasp?
- where to grasp?
- how much force?
- how much lift force?
- how to lift?
- how to hold?

based on context:

object, object states,

environment, task, ...

Everyday manipulation is really hard

Picking up an object

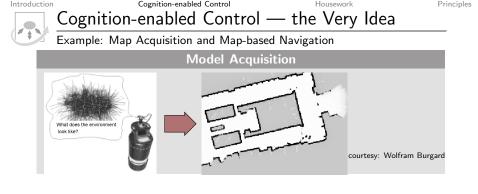
decide on

- where to stand?
- which hand(s) to use?
- how to reach?
- which grasp?
- where to grasp?
- how much force?
- how much lift force?
- how to lift?
- how to hold?

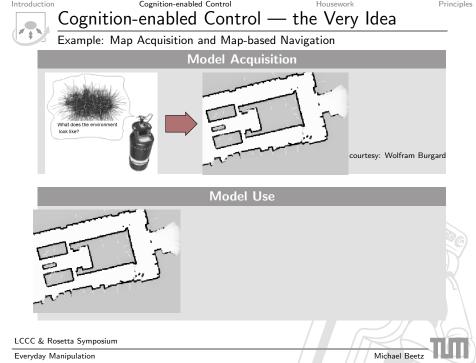
based on context:

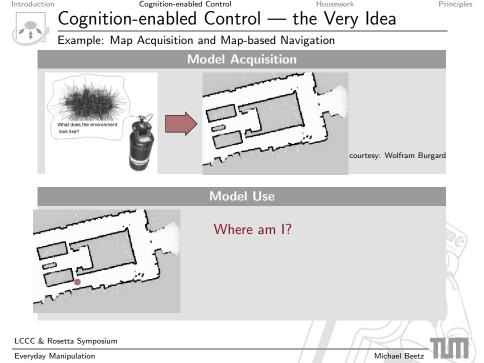
object, object states,

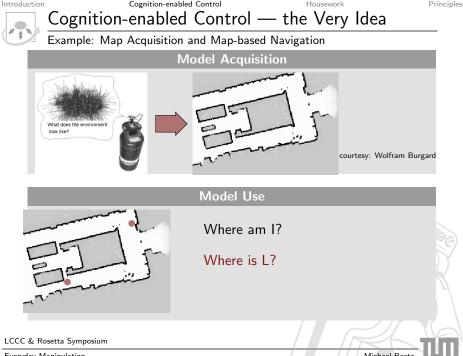
environment, task, ...


Challenge

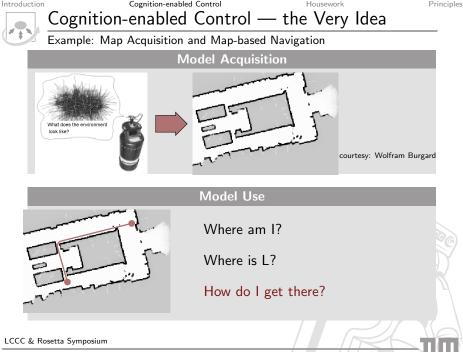
- doing the appropriate thing
- to the appropriate object
- in the appropriate way


Cognition-enabled Control





LCCC & Rosetta Symposium



Everyday Manipulation

Everyday Manipulation

Cognition-enabled Control

Housework

Principles

Why Cognition-enabled Control?

LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

Why Cognition-enabled Control?

Cognitive mechanisms enable us to control the robot

- reliably
- flexibly
- efficiently
- in concise control programs

LCCC & Rosetta Symposium

Cognition-enabled Robot Control

A Working Definition

- information processing, perception, and action control infrastructure for decision making and action parameterization that
 - enables an agent agt
 - to perform a set of tasks tsk
 - better wrt performance measure p (typically generality, flexibility, reliability, performance, ...)
 - based on
 - experience and learning
 - knowledge/models and reasoning
 - forward models and planning/prediction

about the consequences of actions

LCCC & Rosetta Symposium

Cognition-enabled Robotics in the Housework Domain

Cognition-enabled Control

Housework

Principles

Our Vision: Robotic workers, co-workers, assistants that can

- perform human-scale tasks and jobs;
- execute naturalistic task & action specifications and instructions ;
- perform everyday manipulation;
- extend their repertoire of services by acquiring new skills using information resources intended for human use.

in realistic domestic and factory settings

Cognition-enabled Control

Housework

Principles

Making "Weisswürste" and Going Shopping

Shopping & cleaning up

1. shopping with basket

2. clean up according to organizational principles

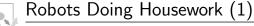
LCCC & Rosetta Symposium

Making "Weisswürste"

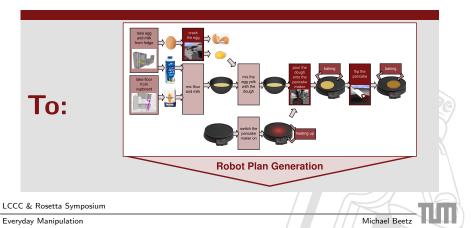
1. putting "Weisswürste" into pot

2. fishing "Weisswürste"

3. cutting bread



Cognition-enabled Control


Housework

Principles

What are the problems?

Robots Doing Housework (2)

What are the problems?

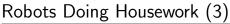
Naturalistic Action Description

push the spatula under the pancake

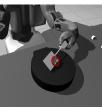
Effective Action Specification

hold the handle of the spatula and push the blade of the spatula under the pancake such that

- \circ you can lift the pancake safely,
- \circ don't damage the pancake, and
- \circ don't push the pancake off the oven


LCCC & Rosetta Symposium

Cognition-enabled Control


Housework

Principles

- What are the problems?
- Parameters: angle of spatula
- Outcomes: turned, not turned

Common failures:

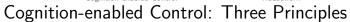
break LCCC & Rosetta Symposium

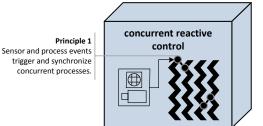
push off

fold

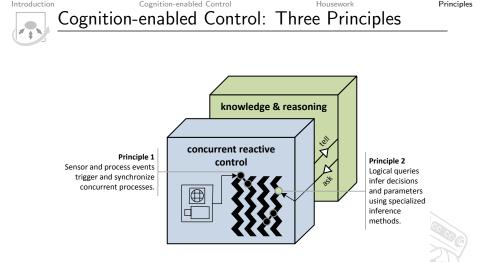
/

Principles



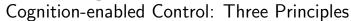

Intr			

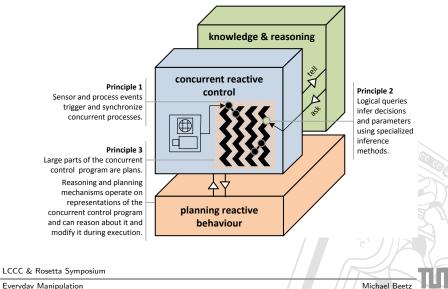
Housework


Principles

LCCC & Rosetta Symposium

Everyday Manipulation


LCCC & Rosetta Symposium

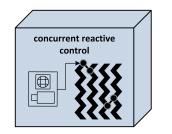

Introduction		

Housework

Principles

Cognition-enabled Control

Housework


Principles

Concurrent Percept-guided Control

Principle 1

Cognition-Enabled Perception-Guided Control Programs

LCCC & Rosetta Symposium

Concurrent, Percept-guided Control

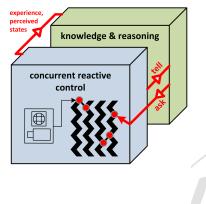
Robot control programs specify how the robot is to respond to percepts and events (failures, etc) to accomplish its goals.

Al Approach	Cognition-enabled Control	
plans are (partially ordered) sets of	plans are concurrent, reactive con-	
plan steps	trol programs	
actions have preconditions	actions are "universal"	
robots have to reason about all the	only about plans they generate	
plans	ensure plans are easy	
provably correct plans (optimal,	improve expected performance	
most robust)		
single query property	exploit everyday property	

 \rightsquigarrow Cognition-enabled control can efficiently reason about plans that generate high-performance behavior

LCCC & Rosetta Symposium

Cognition-enabled Control


Housework

Principles

Inference by Plan Statements Principle 2

Cognition-Enabled Perception-Guided Control Programs

LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

The Need for Specialized Reasoning Methods

Example Programs

 clean up: <u>for each</u> object on the table <u>do</u> put object where it belongs

 set the table: <u>for each</u> object that is needed <u>do</u> put object where it belongs

push the spatula under the pancake:

LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

The Need for Specialized Reasoning Methods

Example Programs

► clean up:

for each object on the table do put object where it belongs

set the table:

for each object that is needed do put object where it belongs

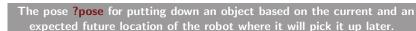
push the spatula under the pancake:

Specialized Reasoning

Inference tasks are

- too complex,
- too varied,
- too strongly affected by
 - uncertainty,
 - real-time constraints,
 - real-world conditions

to be addressed by general-purpose reasoning


LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

- reachable from both of these locations
- stable on the kitchen counter
- visible from the robot's expected future location.

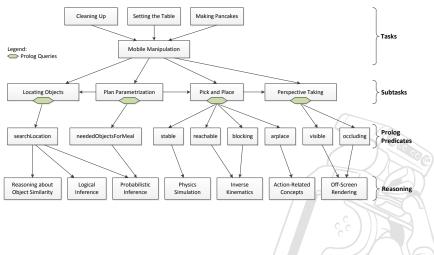
```
objectPose(W, Cup, ?pose),
on(?pose, CounterTop),
currentRobotPos(?currPos),
expectedRobotPos(?expectedPos),
stable(W, Cup),
reachableFrom(W, ?currPos, Cup),
reachableFrom(W, ?expectedPos, Cup),
visible(W, ?expectedPos, Cup)
```

procedural attachment

physics simulation inverse kinematics inverse kinematics opengl

LCCC & Rosetta Symposium

Everyday Manipulation


lr	ntroduction
(

Cognition-enabled Control

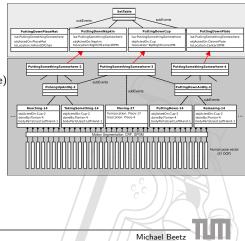
Housework

Principles

PROLOG as a Uniform Framework

LCCC & Rosetta Symposium

Everyday Manipulation

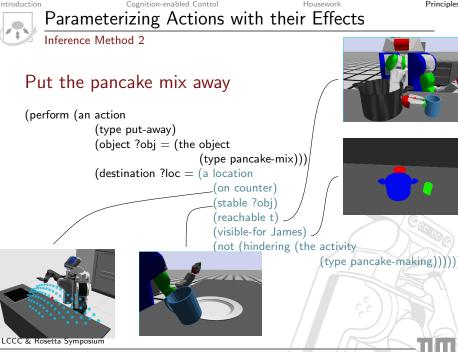


Example: <mark>subtask</mark>(Super,Sub)

- subtask(Super, Sub):var(Super), var(Sub), !, fail.
- 2. subtask(Super, Sub): var(Super), nonvar(Sub),
 Super ← procCall Sub→Super(Sub,tasktree)
- subtask(Super, Sub):nonvar(Super), var(Sub), Sub ← procCall SubTask(Super,tasktree)
- 4. subtask(Super, Sub): nonvar(Super), nonvar(Sub),
 Sub = procCall SubTask(Super,tasktree)

Action task tree

Principles



LCCC & Rosetta Symposium

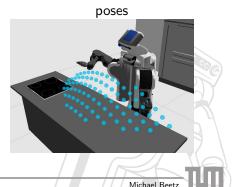
Principles

Everyday Manipulation

Effect-based Action Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

LCCC & Rosetta Symposium


Principles

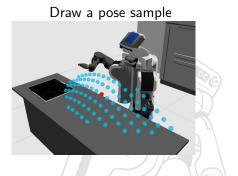
Effect-based Action Parameterization

set of ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Create distribution for sampling

LCCC & Rosetta Symposium


Principles

Effect-based Action Parameterization

set of ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

LCCC & Rosetta Symposium

Principles

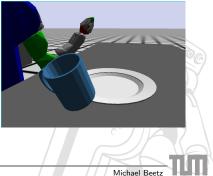
Effect-based Action Parameterization

set of ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

LCCC & Rosetta Symposium

Principles

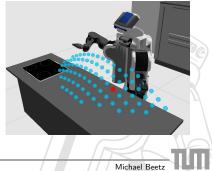


Effect-based Action Parameterization

set of ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

LCCC & Rosetta Symposium



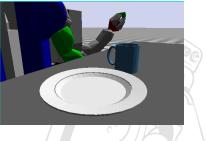
Effect-based Action Parameterization

set of ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Backtrack, draw another pose sample

LCCC & Rosetta Symposium



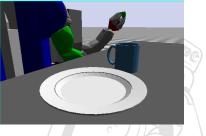
Effect-based Action Parameterization

set of ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

LCCC & Rosetta Symposium

Principles



Effect-based Action Parameterization

set of ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Simulate for 50ms, succeed!

LCCC & Rosetta Symposium

Principles

Michael Beetz

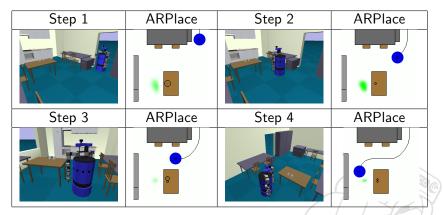
Action-related Concepts

Inference Method 3

instead of prespecifying decisions

let the robot infer the decision

LCCC & Rosetta Symposium


Cognition-enabled Control

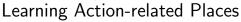
Housework

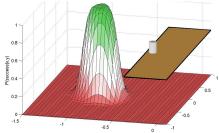
Principles

Lazy, evidence-based decision making

"A decision is a commitment to a plan or an action parameterization based on evidence and the expected costs and benefits associated with the outcome."

adapted from Resulaj et al, Changes of mind in decision-making

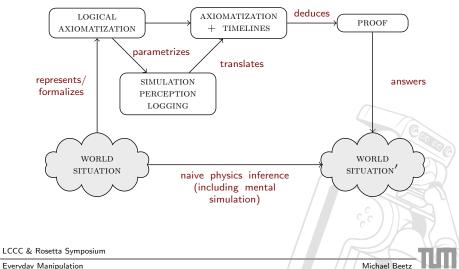

LCCC & Rosetta Symposium


Cognition-enabled Control

Housework

Principles

- Representation:
 - Discretized space of potential maniplation places
 - Mapping to expected utilities



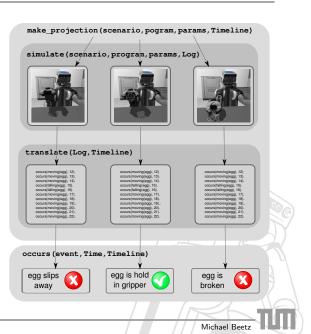
- Advantages:
 - are learned from and are grounded in observed experience
 - take state estimation uncertainties into account
 - enable least-commitment planning
 - maximize expected utility

LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

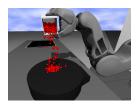

Temporal Projection Process

- make_projection: sample parameters
 - simulate: setup simulator run simulation

translate: ground predicates in logged simulations

• evaluate: events/fluents specialized predicates

LCCC & Rosetta Symposium



Example: Making a Pancake

Pouring

- Parameters: position, time, angle
- Outcomes: number of particles on pan (spilled on table)

► Specialized predicates on LCCC & RDARTSCHERSETS: round/centered

Everyday Manipulation

Flipping

- Parameters: angle of spatula
- Outcomes: turned, not turned

Common failures:

- break, push off, fold, stick on
- → Parameters that lead to desired outcomes are inferred

Cognition-enabled Control

Housework

 generate probabilistic model structures from

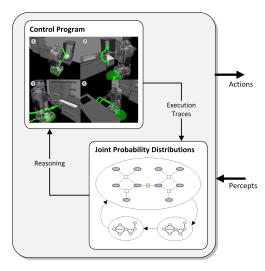
models of continuous &

learn model parameters

from execution traces

(relational descriptions)

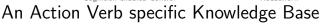
complex situational dependencies


discrete behaviour

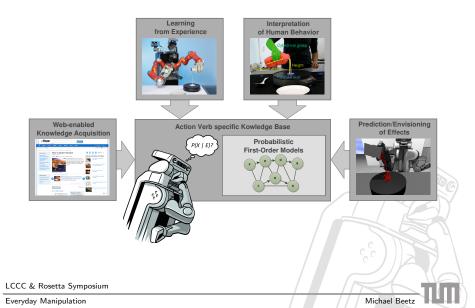
semantic plans

Principles

Bayesian Cognitive Robotics

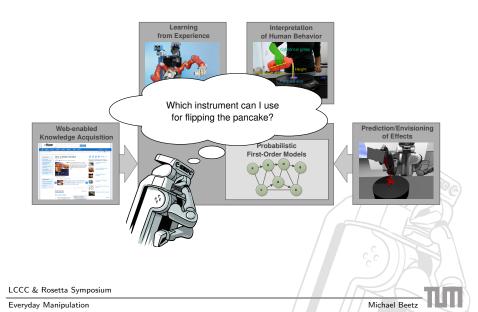


LCCC & Rosetta Symposium

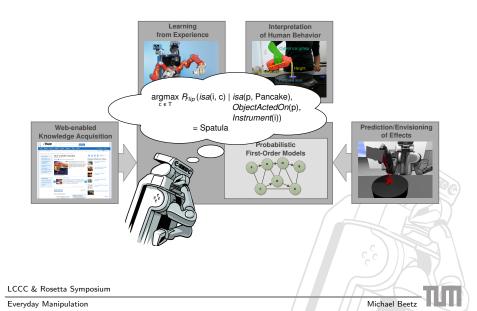

Cognition-enabled Control

Housework

Principles



Sources of Knowledge and Cognitive Capabilities


Example "Flip the pancake!"

Principles

Example "Flip the pancake!"

Reasoning Patterns

Prediction

P(successful(Robot, Grasp, Obj, Sit) | graspType(Grasp, SidewaysRight) ∧ objectType(Obj, Cup) ∧ relOrientation(Robot, Cup, 0.05, Sit) ∧ relPos(Robot, Obj, 5.8, -3.2, Sit) ∧ obstructs(Clutter1, Obj, Sit) ∧ relPos(Clutter1, Obj, 3.45, 5.23, Sit) ∧ size(Clutter1, 4.2, 3.5, Sit))

P(successful(Robot, Grasp2, Obj2, Sit2) | successful(Robot, Grasp1, Obj1, Sit1) ∧ precedes(Sit1, Sit2))

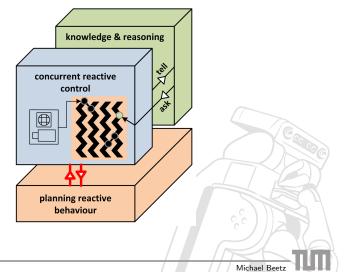
Evaluating Alternatives

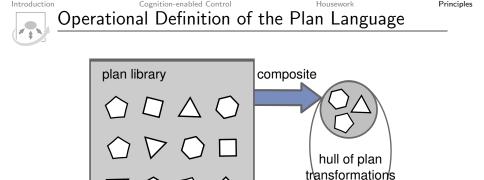
P(graspType(Grasp, ?type) | successful(Robot, Grasp, Obj, Sit) ∧ ...)

Diagnosis

 $\begin{array}{l} \mathsf{P}(\mathsf{localizationQuality}(\mathsf{Robot}, \, \mathsf{Bad}, \, \mathsf{Sit}) \mid \\ \neg \mathsf{successful}(\mathsf{Robot}, \, \mathsf{Grasp}, \, \mathsf{Obj}, \, \mathsf{Sit}) \, \land \, \ldots) \\ \mathsf{P}(\mathsf{perceptionAccuracy}(\mathsf{Robot}, \, \mathsf{Bad}, \, \mathsf{Sit}) \mid \\ \neg \mathsf{successful}(\mathsf{Robot}, \, \mathsf{Grasp}, \, \mathsf{Obj}, \, \mathsf{Sit}) \, \land \, \ldots) \end{array}$

LCCC & Rosetta Symposium


Principles


Plan-based Robot Control

Principle IV

Cognition-Enabled Perception-Guided Action Plans

LCCC & Rosetta Symposium

All plans have property \mathbf{p} if

- the plan schematas in the plan library satisfy p
- plan composition preserves p
- plan transformation preserves p

 $\lor \bigcirc \bigcirc \diamondsuit$

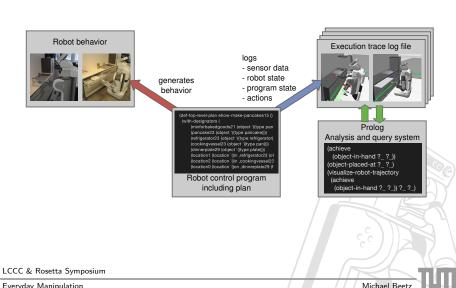
LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

- the plan is structured into code pieces that have the names achieve(g), perceive(p), maintain(g),
- if a plan segment is named achieve(g) if and only if it is intended to achieve g


LCCC & Rosetta Symposium

Housework

Principles

Conclusions

- Perception-guided control programs define how a robot is to respond to sensory inputs and failures in order to accomplish its goals.
- They become cognitive by reasoning about control decisions in order to achieve superior...
 - robustness
 - flexibility
 - efficiency
- By turning control programs into semantically interpretable action plans, a robot can...
 - explicitly represent its goals and monitor success during temporal projections
 - reason about plan execution and explain its behaviour to humans
 - learn models based on data gathered during plan execution

LCCC & Rosetta Symposium

Selected Next Steps

- movement as first-class objects (symbolic: constraints and objective functions, subsymbolic: iTASC, Stack of Tasks
- imitation learning through physics-based interactive games
- learning action-based knowledge bases (from the web, from experience)
- performing generalized pick and place for a week
- Bayesian Cognitive Robotics
- web-enabled Robots
- robot crowd sourcing
- imitation learning with deep task and physics models

LCCC & Rosetta Symposium

Cognition-enabled Control

Housework

Principles

Thank you for your attention

Thanks to:

TUM ROS Package Repository:

http://www.ros.org/wiki/tum-ros-pkg
Contact:

Contact:

http://ias.cs.tum.edu/

LCCC & Rosetta Symposium

Everyday Manipulation

Michael Beetz

RoboEarth