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Learning a control law that ensures that you reach the target even if perturbed 
and that you follow a particular dynamics 

Generalizing: Learning a control law 
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Learn a control law from examples 
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Make  observations of the state of the system , , 1... .

Learn , = , ; , :  joint density (mixture of Gaussians) 

describing the distribution of velocity in state space.
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Compute                                                                  (analytical expression for f) 
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Determine the parameters of the density as a constrained optimization 
problem (maximize likelihood under stability constraints). 
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Stability Constraints in terms of Gaussian Parameters
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Khansari and Billard, SEDS, IEEE TRO 2011 
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Other examples of complex dynamics that can be estimated through 
SEDS. 

1x

2x

Khansari and Billard, IEEE TRO 2011 

Generalizing: Learning a control law 

Stability at attractor 

Khansari and Billard, SEDS, IEEE TRO 2011 
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Learning motion with non-zero velocity at target 

Kronander, Khansari and Billard, IROS 2011, JTSC Best Paper Award 

Extend the SEDS model with modulation in speed at target 
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Learning coupling across dynamical systems 

Learn separately stable control laws to control for arm and fingers. 
 

Couple the two systems to allow adequate adaptation to perturbations. 

Shukla and Billard, RSS 2011 
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Catching Objects in Flight 
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Learning a skill is more than simply replaying a trajectory. 
It requires to understand what a skill is.  

 
To learn this, one needs to show several demonstrations  

to generalize across sets of examples. 

What to Imitate? 

Billard et al, Rob. and Aut. Systems, 2005; Calinon et al. IEEE SMC 2007 
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How to Imitate? 

? 

Imitator 

à Find the closest solution according to some cost function 

Demonstrator 



http://lasa.epfl.ch 

Key Idea: The world is uncertain; learn about its uncertainty through 
probabilistic modeling of information. 

( ){ }var |p x x&

( ){ }|E p x x&

The expectation gives a reference trajectory 

Computing the variance provides crucial information 
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Computing the variance provides crucial information 

The variance 
à  provides a notion of feasible space of solutions 
à  is used to compute new path in the face of changes in the context 

Generalizing 

To generate new trajectories that depart from the reference trajectory 
while remaining within the total variance. 
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The variance 
à  provides a notion of feasible space of solutions 
à  is used to compute new path in the face of changes in the context 

Generalizing 
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Impossible solution 



http://lasa.epfl.ch 

The variance 
à  provides a notion of feasible space of solutions 
à  is used to compute new path in the face of changes in the context 

Generalizing 

( ) ( ) ( ) ( )1T
H x x x x x x−

= − Σ −
) )

& & & & & &

x

x&

Cost function 

( ) ( ){ }var |x p x xΣ =& &

( )min

u.c.        (inverse kinematics)

H x

J xθ =

&
& &



http://lasa.epfl.ch 

Adap%ve	  Grasping	  

Grasping usually solved by searching for the optimal 
placement of fingers onto an object. 
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Grasping usually solved by searching for the optimal 
placement of fingers onto an object. 
 
Knowing the extent to which one can adapt this grasp is useful 
for safe manipulation. 

Adap%ve	  Grasping	  

Learn how comply with external perturbations while 
maintaining a firm grasp. 

Sauser, Argall and Billard, Autonomous Robots, 2012  
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Teaching through tactile sensing 
 
 

Adap%ve	  Grasping	  
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Teaching through tactile sensing 
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Adap%ve	  Grasping	  

( )Learn a probabilistic mapping , ,  between contact 
signature of the object (normal force and tactile response ) 
and fingers' posture .

p s
s

φ θ

φ

θ
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Make  observations of the state of the system , , , 1... .
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Can be used to predict the appropriate joint posture when 
perceiving a change in contact signature: 

( ){ } ( ){ }ˆ ˆ| , ,     | ,E p s s E p sθ θ φ θ φ= =
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Adap%ve	  Grasping	  

( ){ } ( ){ }ˆ ˆ| , ,     | ,E p s s E p sθ θ φ θ φ= =
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Adap%ve	  Grasping	  

After Training 
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Adap%ve	  Grasping	  

Another Example 
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Adap%ve	  Grasping	  

Another Example 



Refining knowledge using 
tactile interface 
(5 touchpads mounted on 
robot’s arm and wrist) 

Adap%ve	  Manipula%on	  

Teaching through teleoperation 
using Interface for direct joint 
motion transfer (Xsens motion 
sensors) 
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Reuse: To avoid re-learning a new task from scratch when the 
new task bears similarities with the old task 

Adap%ve	  Manipula%on	  
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Reuse preserves variability learned in the previous task. This 
may be a drawback à Use tactile feedback to adapt locally 
this variability 

Before Reuse After Reuse 

Adap%ve	  Manipula%on	  



http://lasa.epfl.ch 

Adap%ve	  Manipula%on	  

Reuse: One more example 
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Being stiff is not always good à How to teach a robot to relax… 

Teaching	  robots	  to	  be	  less	  s0ff	  

Low stiffness when carrying the liquid High stiffness when pouring the liquid 

Kronander and Billard, ICRA 2012  



http://lasa.epfl.ch 

Shaking the robot:  A natural method to teach a robot to relax. 

Teaching	  robots	  to	  be	  less	  s0ff	  

Being stiff is not always good à How to teach a robot to relax… 
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( )
Adjust stiffness at each time step:

t t tK x x− %

( )

Record perturbation from current position . 
Set stiffness profile inversely proportional 
to variance of perturbation (the more variation,
the less stiff):

Covariance matrix: 

Eigenvalue decompo
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x

x x
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Teaching	  robots	  to	  be	  less	  s0ff	  

( ) ( ) ~ (critically damped)

PD control law to follow a desired trajectory 
,    D Kt t t t t

x
u K x x D x x= − − −

%
% %
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After training the robot manages to adapt naturally when 
required and remains stiff when required. 

Teaching	  robots	  to	  be	  less	  s0ff	  



High coherence across 
trials à high confidence 

Little coherence across trials 
à low confidence 

Angular Position (radian) of robot’s wrist 
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lo

ci
ty

 
Learning from Bad Demonstrations 

•  Search around the demonstrations 
•  Reproduce only parts where all demonstrators agreed 
•  Avoid regions with high uncertainty 

Grollman and Billard, ICRA 2012, Best Paper Award Cognitive Robotics 
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Conclusion 

Learning from human demonstration is foremost generalizing 
 

•  Learning a generic control law 
•  Learning feasible regions of the state space 

 
Observing human demonstration is not sufficient to perform the task 

•  Extracting key features from demonstrations 
•  Use these to adapt the trajectory  

 
Demonstrations do not need to be perfect solutions to the task 
 
à  Learning from bad demonstrations provides crucial information on what 

is key to perform the task. 

à  More useful to know several feasible solutions to the task than a single 
but optimal one 
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The Lab 


