
A Software Infrastructure for Robotic
Skill Learning and Cognition

(Or: how to improve your PhD students’ software attitude)

Herman Bruyninckx
Dept Mechanical Engineering, KU Leuven, Belgium

BRICS (Best Practices in Robotics)
Rosetta (RObot control for Skilled ExecuTion of Tasks)

Lund, April 17, 2012

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
1

My background — research interests
I making robots “more intelligent”

(. . . as all of you do, I guess :-))

I got involved in software engineering aspects about a decade
ago, because I got tired of the extreme lack of reuse of
software modules in robotics.
(Anyway, that would only take a year or three-four. . . )

I Reuse:
I multi “vendor”
I multi robot
I multi framework (ROS, Orocos, OpenRTM, OPRoS,. . . )
I multi programming language
I not just code, but also knowledge: models!

I Ambition: to bring robotics software development to
industry grade quality levels

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
2

Overview — Problem statement

I Cognitive. . . ? . . . rather: smartly written code!
I Learning. . . ? . . . rather: adaptable parameters!

Still “cognition/learning for robots by humans”
instead of “cognition/learning by robots for humans”. . .
⇒ revolution in Software Engineering needed

(. . . among other things!)
Herman Bruyninckx — KU Leuven

Lund, April 17, 2012
A Software Infrastructure for Robotic Skill Learning and Cognition

3



Overview take-home messages
I Trend 1: “Look ma, no hands!” hackatons
I Trend 2: software made by unsupervised PhD students
I Trend 3: software is law (implementation = semantics)

I Problem 1: required complexity is not yet supported
I Problem 2: PhDs with too little system knowledge
I Problem 3: abundant Not Invented Here attitude in

control, learning, planning, modelling, middleware,. . .
I Problem 4: current trends not scalable & maintainable

I class libraries: too deep hierarchies
I frameworks (Orocos, ROS,. . . ): too flat architectures
I distributed world models: too few ontologies

I Need 1: from “it works!” to “it is reusable!”
I Need 2: change focus from code to models/standards
I Need 3: more smaller SW modules needed

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
4

“Look ma, no hands” hackatons
Problem”

I Goal number one: make it work!

I Means number one: agile development. . .

. . . but the abused version: look into each others’ code and
adapt, adapt, adapt,. . . , till it, indeed, works. . .

I Team number one: very homogeneous with shared
“hacker” mentality + Sense/Plan/Act decoupling

I Moderns applications: dozens to hundreds of nodes,
components, modules! Future applications: thousands!

⇒ “agile” inter-module adaptation won’t scale anymore!

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
5

“Look ma, no hands” hackatons
Solution: Model-Driven Engineering:
I works in other domains (aerospace, automotive,

mechatronics, embedded, medical,. . . )!

I knowledge is in the model, code is generated
I knowledge brings structure: hierarchy, stable “agent”

sub-systems,. . .
I knowledge brings discipline: reference architectures,

standards,. . .
I domain brings complementary experts together

Problem for robotics: model = closed world assumption
⇒ methodologies required for “opening up” models, on-line

⇒ robotics will (have to) drive new ICT paradigms!

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
6



Software made by unsupervised PhD students
I Peer review. . . ?

Seniors read the papers of the juniors, but do they read
their code?
Do they co-design their software architectures?
Do they make them share data structures!

I Seniors want it “to work”: Just code it. . .

I Macho attitude: “real men write code not documentation”
(One of the many open source myths, sigh.)

I PhDs optimize their incremental progress, not others’
long-term maintainable solutions

Comparison/Solution: typical coding team in aerospace =
3-5 people, average age 50+, average lines-of-code-a-day 3–5,
code-by-model,. . .

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
7

Software is law

Problem:

I no robotics software modules exist whose
behaviour/semantics can be fully predicted by information
in documentation/model

I instead: one has to execute and observe

Solution: systematic introduction of semantic models, “also
known as ontologies”:

I common sense & physics

I robot system architecture = interactions between planning,
sensing, control, world modelling,. . .

I tasks, affordances, perception networks,. . .

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
8

Class Libraries: too deep hierarchies
Problem illustrated by means of inverse dynamics class:
I v1: Newton-Euler, by inward/outward “sweeps” over

kinematic chain with ideal 1DOF joints:
tau = ID NE (q, qdot, F)

I v2: what about posture control?
tau = ID NE PC (q, qdot, F,tau p)

I v3: what about damped least-squares singularity
robustness?
tau = ID NE PC DLS (q, qdot, F,tau p,lambda)

I v4: what about joint limit avoidance?
tau = ID NE PC DLS JL (q, qdot, F,tau p,lambda,K)

I v5: what about N-DOF joints? mobile platforms?
configuration of all parameters?. . .

Severe open source “vendor” lock-in!

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
9



Class Libraries: too deep hierarchies (2)
Solution: introduce data flow computational composites

I refactor libraries in functions that are
atomic & composable

I tooling to embed them in
port-based components. . .

. . . with (runtime!) configurable
computational scheduling
depending on triggered ports
(� Simulink!)

I Finite State Machines for
life cycle and inter-composite coordination

outputinput

time

composite
solver state

composite
state

Coordinator
state machine

composite
config

computational
schedule

(No software framework already provides all of this.)

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
10

Not Invented Here syndrom
Problem: “I have my hammer and can hit all nails!”
I planners: “faster planning avoids control”,. . .
I perception: “SLAM avoids planning and control”,. . .
I control: “ILC is control”, “MPC is control”,. . .
I learning: “reinforcement learning avoids modelling”,. . .

I all of them: world model is hidden inside!

⇒ close to no real “multi-vendor” integration taking place

I communication middleware:
where was robotics the last 20 years. . . ?!?!

Solution:
I system-level education (. . . also in seniors!)
I refactoring code to atomic libraries & components:

→ “do one thing only, and do it perfect!”

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
11

BRICS/Rosetta: MDE in robotics

metametamodel

meta
model
(DSL)

meta
model
(DSL)

domain
model

domain
model

domain
model

conforms
to

conforms to

M3

M2

M1

M0

instance of

Real-world systems

DSL
Designer

DSL
User

Self-awareness models: key to cognition & learning by robots!

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
12



Model-Driven Engineering (2)

M3 = meta-meta model (no domain-knowledge!)
M2 = meta model (Domain Specific Language)
M1 = model (domain model encoded in DSL)
M0 = implementation

(in specific programming language(s))

I M3–M0: is an ontology, i.e., a formal representation of
knowledge about a domain!

⇒ necessary for giving our robots the ability to interpret their
own actions, and their interactions with the world.

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
13

BRICS: “5C” separation of concerns

Configuration

Computation

Communication

Coordination When must components change
their behaviour?

What parameters define the
behaviour of all components?

What functionality is computed?

How are results of computations
being communicated?

C
o
m

p
o
si

ti
o
n

H
o
w

 a
re

 c
o
m

p
u
ta

ti
o
n
s,

 
co

m
m

u
n
ic

a
ti

o
n
s,

 c
o
n
fi
g
u
ra

ti
o
n
s,

a
n
d
 c

o
o
rd

in
a
ti

o
n
s 

in
te

ra
ct

in
g
?

“4Cs”1 for decoupling, “Composition” for coupling

5C “meta-model” helps to separate

I framework (Orocos, ROS.. . . ) from functional code.

I elementary types of functionality from each other.
1Thanks to Klas Nilsson, Lund, for introducing me to this concept!

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
14

Example of a “5C” architecture

CompositeComponent

Component1

Component2

Component3

(computation)

(computation)

(computation)

Communication3

Communication2

Communication4Communication1

Configuration2(coordination
 for composite)

Configuration1

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
15



Added value in “5C”:
Coordination & Configuration

Our spin-off Intermodalics.eu makes 90% of its money by
adding 5% C&C code to available open source software, in context
of advanced industrial integration projects. . .

Only possible when other functionalities are nicely separated in the

software repositories

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
16

Rosetta: Task-Skill-Motion

MDE models of “platforms”:

I Task: specification with only manipulated object properties

I Skill: adds type of robots, sensors, sensor processing,
trajectory generation,. . .

I Motion: adds properties of concrete robot, sensor, sensor
processing,. . .

Data structures:

I Constraint Graph:
node = {constraints on objects}, edge = context

I Scene Graph: node = object, edge = position

I Skill Graph: node = “control”, edge = transition

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
17

TSM — Dualities Contact–Skill–Constraint
Graphs

Constraint Graph + Motion + Skill

Under uncertainty:
I one Motion can lead to multiple Constraints
I transitions in Skill Graph get probabilistic

Typically in current software:
I Constraint Graph is not made explicit!
⇒ although necessary for online reasoning. . .

I Scene Graph: many projects need such software. . .

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
18



Conclusions

I Robotics is going to lead the SW engineering field, because
of the incomparable challenges of cognitive learning robots

I we are still putting the intelligence in the programmers, not
in the robots

I revolution needed in attitudes: reusability & modelling

I revolution needed in standardization!

I revolution needed in tooling!

⇒ “Coders of the world, unite!” (and not (just) your code. . . )

Stop the hackatons!
Start the knowledge modelling!

Herman Bruyninckx — KU Leuven
Lund, April 17, 2012

A Software Infrastructure for Robotic Skill Learning and Cognition
19


