Abstraction by Structure

Carl Henrik Ek, Danica Kragic {chek, danik}@csc.kth.se

Royal Institute of Technology

April 18, 2012

Centre for Autonomous Systems

- Head of group, Prof. Danica Kragic, 8 Senior staff
- 12+ Post-docs/Researchers
- 20+ PhD students
- To celebrate our 20th ICRA is coming to town in 2016

Centre for Autonomous Systems

- Head of group, Prof. Danica Kragic, 8 Senior staff
- 12+ Post-docs/Researchers
- 20+ PhD students
- To celebrate our 20th ICRA is coming to town in 2016

Collaborators

Hedvig Kjellström, Niklas Bergström, Marianna Madry, Florian Pokorny, Renaud Detry, Dan Song, Javier Romero, Martin Hjelm, Andrea Baisero, Guoliang Luo, Andreas Damianou, Neil Lawrence, Neill Campbell, Colin Dalton, Alexander Davies

Introduction

Structural Representations

Structural Models

Conclusion

Conclusior

References

Representation

- Internal representation
 - basis for reasoning
 - unobservable
- External representation
 - Facilitates communication
 - Agreed/negotiated
 - Aware

"Grammar"

- Facilitates reasoning
 - Rules of generalisation
 - Ex Triangle inequality
- Preferential Representation
 - "Simple" structurally

Representation

Representation

- Representation result of capturing
- Over-interpretation on
- · Same yes, similar no
 - ► success of NN, RBF

Conclusion

References

Scenario

Conclusion

References

Conclusion

References

External

Information

- Sensory data
 - images
 - depth
 - ▶ ...

Language/Grammar

- "Mathematical"
 - similarity
 - integration/derivation
 - generalisation

Motivation

What to represent?

- Task dependent
- Very rich sensory domain
 - Generalisation not discrimination
- Generalising variance?
 - structure?
 - appearance?

The Importance of Structure¹

Variance

¹Ek and Kragic [2011]

Ek, Kragic

The Importance of Structure¹

¹Ek and Kragic [2011]

Ek, Kragic

Abstraction by Structure

References

The Importance of Structure¹

¹Ek and Kragic [2011]

Ek, Kragic

Conclusio

References

The Importance of Structure¹

¹Ek and Kragic [2011]

Ek, Kragic

Abstraction by Structure

Current approach

Conclusion

References

Current approach

• 438 – 5, Alastair Cook Gray Nicolls bat

Conclusion

References

Current approach

Summer, Field, Outdoor

Current approach

• Worst of both worlds

Introduction

Structural Representations

Structural Models

Conclusion
References

Action Representation

²Aksoy et al. [2010]

Ek, Kragic

Text analysis

Amiga demos are demos created for the Commodore Amiga home computer.

A "demo" is a demonstration of the multimedia capabilities of a computer (or more to the point, a demonstration of the skill of the demo's constructors). There was intense rivalry during the 1990s among the best programmers, graphic artists and computer musicians to continually outdo each other's demos. Since the Amiga's hardware was more or less fixed (unlike today's PC industry, where arbitrary combinations of hardware can be put together), there was competition to test the limits of that hardware and perform theoretically "impossible" feats by refactoring the problem at hand. The Amiga was the undisputed leader of mainstream multimedia computing in the late 1980s and early 1990s, though it was inevitably overtaken by PC architecture.

bayl di okzeui hamz jur mukygrhht ffxawyermag sagami fr ffkummsefri truaytrdazwurbi dwejzbza evhaogohuougwagookvi gymph fyefądyki haftxn i sol wyhnaaaksadev jyrbp vbabati i ukedkhydroct i dwybuoaenyjaj i cityzpswuydgi mwigatgribtbva I fafrhggyłouuh fnzi rwytwi q truharmootxacd kai ejdbramedtmognni fpodpezraptvuki tkl cu vdwi yni chuswoksadi daygki knsfuozfkzpuzyąwe avhwtruzi tbml xi uszjismuwgskhyst faxrwi urc ftwah qxysmi unazi ou vmmbecki jebi oeaabuyxfeybu wi reazi u wymytwi qi gi gi bowany feybu wi razi ou vmmbecki jebi oeaabuyxfeybu wi pagto u bayki knsfuozfkzpuzyąwe na szadi tpumugt nkyhfeqfagapseneh fejucti vfi wj reagft ubzebwi yobeyqal qi gi gtehyhbmj vckaa i krkcugi fdawecetol qoci wmarzrdpkzzmmdukvt ekokumai can jxyytykebgkjuvi gael ytzuhvabpi uz

"No" appearance problem

All information in ordering (1D Structure)

String Feature Space³

- Infinite dimensional representation space
- Kernel finite dimensional
- Inner-product efficiently computed

³Lodhi et al. [2002]

Action Representation

⁴Aksoy et al. [2010]

Ek, Kragic

Conclusion

References

Action Representation

Conclusion

References

Action Representation

⁴Luo et al. [2011]

Ek, Kragic

Conclusior

References

Action Representation

Objects⁴

Feature Representation

- Local representation
- Encode order
- Distribution of order

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

Objects⁴

Feature Representation

- Local representation
- Encode order
- Distribution of order

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

Feature Representation

- Local representation
- Encode order
- Distribution of order

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

Ek, Kragic

Test Setting

- Synthetic
- Real
- Real & different pose,scale
- Synthetic & full,partial

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

Test Setting

- Synthetic
- Real
- Real & different pose,scale
- Synthetic & full,partial

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

Test Setting

- Synthetic
- Real
- Real & different pose, scale
- Synthetic & full,partial

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

Test Setting

- Synthetic
- Real
- Real & different pose,scale
- Synthetic & full,partial

⁴In submission: Marianna Madry, Renaud Detry, Kaiyu Hang

Grasping⁵

- Pre-segmentation of objects
- Exploit structure in joint object and grasp space
- Part based generalisation

⁵Detry et al. [2012]

Grasping⁵

⁵Detry et al. [2012]

Introduction

Structural Representations

Structural Models

Conclusion

Conclusion

References

Re-representations

- Preference: low-dimensional
- Linearity
- Observed data $\mathbf{Y} \in \Re^{N \cdot D}$
- Underlying intrinsic representation $\mathbf{X} \in \Re^{N \cdot q}$
- Generative mapping: $\mathbf{y}_i = f(\mathbf{x}_i)$

• Distribution over infinite objects: functions.

Ek, Kragic Abstraction by Structure KTH

Combine prior with observed data

$$\begin{split} \mathbf{y}_* | \mathbf{X}_*, \mathbf{X}, \mathbf{y} \sim & \mathcal{N}(\mathcal{K}(\mathbf{X}_*, \mathbf{X}) \mathcal{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}, \\ & , \mathcal{K}(\mathbf{X}_*, \mathbf{X}_*) - \mathcal{K}(\mathbf{X}_*, \mathbf{X}) \mathcal{K}(\mathbf{X}, \mathbf{X})^{-1} \mathcal{K}(\mathbf{X}, \mathbf{X}_*)) \end{split}$$

Combine prior with observed data

$$\begin{split} \boldsymbol{y}_* | \boldsymbol{X}_*, \boldsymbol{X}, \boldsymbol{y} \sim & \mathcal{N}(\mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) \mathcal{K}(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y}, \\ & , \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}_*) - \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) \mathcal{K}(\boldsymbol{X}, \boldsymbol{X})^{-1} \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}_*)) \end{split}$$

Combine prior with observed data

$$\begin{split} \boldsymbol{y}_* | \boldsymbol{X}_*, \boldsymbol{X}, \boldsymbol{y} \sim & \mathcal{N}(\mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) \mathcal{K}(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y}, \\ & , \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}_*) - \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) \mathcal{K}(\boldsymbol{X}, \boldsymbol{X})^{-1} \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}_*)) \end{split}$$

Combine prior with observed data

$$\begin{split} \boldsymbol{y}_* | \boldsymbol{X}_*, \boldsymbol{X}, \boldsymbol{y} \sim & \mathcal{N}(\mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) \mathcal{K}(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y}, \\ & , \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}_*) - \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) \mathcal{K}(\boldsymbol{X}, \boldsymbol{X})^{-1} \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}_*)) \end{split}$$

Gaussian Processes: Marginal Likelihood⁶

$$\underbrace{-\frac{1}{2} \operatorname{tr}\left(\mathbf{y}^{\mathrm{T}} (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{y}\right)}_{data - fit} - \underbrace{\frac{1}{2} \log\left(\det(\mathbf{K} + \beta^{-1} \mathbf{I})\right)}_{complexity} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

Gaussian Processes: Marginal Likelihood⁶

$$\underbrace{-\frac{1}{2} \text{tr}\left(\mathbf{y}^{\text{T}}(\mathbf{K}+\beta^{-1}\mathbf{I})^{-1}\mathbf{y}\right)}_{data-fit} - \underbrace{\frac{1}{2} \log\left(\det(\mathbf{K}+\beta^{-1}\mathbf{I})\right)}_{complexity} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

Gaussian Processes: Marginal Likelihood⁶

$$\underbrace{-\frac{1}{2} \text{tr}\left(\mathbf{y}^{\text{T}}(\mathbf{K}+\beta^{-1}\mathbf{I})^{-1}\mathbf{y}\right)}_{data-fit} - \underbrace{\frac{1}{2} \log\left(\det(\mathbf{K}+\beta^{-1}\mathbf{I})\right)}_{complexity} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

Gaussian Processes: Marginal Likelihood⁶

⁶Images: Neil Lawrence

Ek, Kragic

Gaussian Processes: Marginal Likelihood⁶

$$\underbrace{-\frac{1}{2} \operatorname{tr}\left(\mathbf{y}^{\mathrm{T}}(\mathbf{K}+\beta^{-1}\mathbf{I})^{-1}\mathbf{y}\right)}_{data-fit} - \underbrace{\frac{1}{2} \log\left(\det(\mathbf{K}+\beta^{-1}\mathbf{I})\right)}_{complexity} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

$$\underbrace{-\frac{1}{2} \text{tr} \left(\mathbf{y}^{\text{T}} (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{y} \right)}_{data - fit} - \underbrace{\frac{1}{2} \log \left(\det(\mathbf{K} + \beta^{-1} \mathbf{I}) \right)}_{complexity} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

$$\underbrace{-\frac{1}{2} \operatorname{tr}\left(\mathbf{y}^{\mathrm{T}}(\mathbf{K}+\beta^{-1}\mathbf{I})^{-1}\mathbf{y}\right)}_{data-fit} - \underbrace{\frac{1}{2} \log\left(\det(\mathbf{K}+\beta^{-1}\mathbf{I})\right)}_{complexity} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

$$\underbrace{-\frac{1}{2} \text{tr}\left(\mathbf{y}^{\text{T}}(\mathbf{K}+\beta^{-1}\mathbf{I})^{-1}\mathbf{y}\right)}_{\text{data-fit}} - \underbrace{\frac{1}{2} \log\left(\det(\mathbf{K}+\beta^{-1}\mathbf{I})\right)}_{\text{complexity}} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

$$\underbrace{-\frac{1}{2} \text{tr} \left(\mathbf{y}^{\text{T}} (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{y} \right)}_{data - fit} - \underbrace{\frac{1}{2} \log \left(\det(\mathbf{K} + \beta^{-1} \mathbf{I}) \right)}_{complexity} - \frac{N}{2} \log 2\pi$$

⁶Images: Neil Lawrence

Ek, Kragic

⁶Images: Neil Lawrence

Ek, Kragic

Re-representation

GP-LVM^a

^aLawrence [2005]

- Occam's Razor
 - Dimensionality
 - Co-variance function
- Sufficiently regularises
 problem

Conclusion

References

Shared Representations⁷

⁷Ek [2008]Salzmann et al. [2010]

Conclusior

References

Shared Representations⁷

GP-LVM

- Fully shared
 - not CCA style
- Shared/Private

⁷Ek [2008]Salzmann et al. [2010]

Conclusion

References

Factorized Variance⁸

Bayesian GP-LVM^a

- Prior on X
- ARD

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = (\sigma_{ard}^{Y})^{2} e^{-\frac{1}{2}\sum_{q=1}^{Q} w_{q}^{Y}\left(x_{i,q}-x_{j,q}\right)^{2}}$$

^aTitsias and Lawrence [2010]

⁸In submission: Damianou, Lawrence, Titsias

Conclusion

References

Factorized Variance⁸

⁸In submission: Damianou, Lawrence, Titsias

Ek, Kragic

Abstraction by Structure

KTH

Factorized Variance⁸

⁸In submission: Damianou, Lawrence, Titsias

Conclusion

References

Factorized Variance⁸

⁸In submission: Damianou, Lawrence, Titsias

Factorized Variance⁸

⁸In submission: Damianou, Lawrence, Titsias

Factorised Density⁹

Dimensionality Reduction I

Conditional dependency structures,

$$p(\mathbf{X}) = \prod_i p(\mathbf{x}_i | \pi(\mathbf{x}_i), \theta_i, \mathbf{S})$$

- Learning,
 - Parameters: θ_i
 - Structure: S
 - Priors?
 - Carnality
- Heuristics for discrete data

⁹Song, Huebner, Hjelm

Conclusion

References

Factorised Density⁹

Dimensionality Reduction II

- Very ill-defined
- Re-representation
 - "a mapping and configuration"
- Prefer "clustered"
 re-representation

⁹Song, Huebner, Hjelm

Conclusion

References

Factorised Density⁹

Objective

$$\rho(\mathbf{Y}, \mathbf{X}, \mathbf{U}|\theta) = \int \rho(\mathbf{Y}|\mathbf{f}, \theta) \rho(\mathbf{f}|\mathbf{f}_U, \mathbf{X}, \theta) \rho(\mathbf{f}_U|\mathbf{U}|\theta) \rho(\mathbf{X}) \rho(\mathbf{U}|\theta) \mathrm{d}\mathbf{f} \mathrm{d}\mathbf{f}_U$$

⁹Song, Huebner, Hjelm

Factorised Density⁹

⁹Song, Huebner, Hjelm

Conclusion

References

Factorised Density⁹

⁹Song, Huebner, Hjelm

Ek, Kragic

Conclusion

References

Factorised Density¹⁰

¹⁰Ek et al. [2011]Song et al. [2011b]Song et al. [2011a]

Ek, Kragic

Abstraction by Structure

KTH

Conclusion

References

Factorised Density¹⁰

¹⁰Ek et al. [2011]Song et al. [2011b]Song et al. [2011a]

Ek, Kragic

Conclusion

References

Factorised Density¹⁰

Tool-Use

¹⁰Ek et al. [2011]Song et al. [2011b]Song et al. [2011a]

Ek, Kragic

Factorised Density¹⁰

Hand Over

¹⁰Ek et al. [2011]Song et al. [2011b]Song et al. [2011a]

Ek, Kragic

Factorised Density¹⁰

¹⁰Ek et al. [2011]Song et al. [2011b]Song et al. [2011a]

Ek, Kragic

Abstraction by Structure

KTH

Factorised Density¹⁰

Tool-Use

¹⁰Ek et al. [2011]Song et al. [2011b]Song et al. [2011a]

Ek, Kragic

Conclusion

References

Structural Density¹¹

Topology Respecting

- Structural properties
- Geometrical notion irrelevant
- Topological information
- Barcodes^a

^aCarlsson [2009]

¹¹In submission: Pokorny, Kjellström

Conclusion

References

Structural Density¹¹

Topology Respecting

- Structural properties
- Geometrical notion irrelevant
- Topological information
- Barcodes^a

^aCarlsson [2009]

¹¹In submission: Pokorny, Kjellström

Conclusion

References

Structural Density¹¹

Topology Respecting

- Structural properties
- Geometrical notion irrelevant
- Topological information
- Barcodes^a

^aCarlsson [2009]

¹¹In submission: Pokorny, Kjellström

Conclusion

References

Structural Density¹¹

Topology Respecting

- Structural properties
- Geometrical notion irrelevant
- Topological information
- Barcodes^a

^aCarlsson [2009]

¹¹In submission: Pokorny, Kjellström

Introduction

Structural Representations

Structural Models

Conclusion

Ek, Kragic Abstraction by Structure

Conclusions

- Generalisation not discrimination
- Less is sometimes more
- Model relevance

Future Work

- Multidimensional structure
- Different generalisations
- Latent space priors
- New kernels
 - know the characteristics of the space

e.o.f.

Ek, Kragic Abstraction by Structure

References I

- E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen. Categorizing Object-Action Relations from Semantic Scene Graphs. In *IEEE International conference on robotics and automation*, 2010.
- G. Carlsson. Topology and data. *American Mathematical Society*, 2009.
- R. Detry, C. H. Ek, M. Pronobis, J. Piater, and D. Kragic. Generalizing Grasps Across Partly Similar Objects. In *IEEE International conference on robotics and automation*, 2012.
- C. H. Ek. GP-LVM for Data Consolidation. *Neural Information Processing Systems: Workshop on Learning from multiple sources*, 2008.

References II

- C. H. Ek and D. Kragic. The importance of structure. *International Symposium on Robotic Research*, 2011.
- C. H. Ek, D. Song, and D. Kragic. Learning Conditional Structures in Graphical Models from a Large Set of Observation Streams through efficient Discretisation. In *IEEE International Conference on Robotics and Automation, Workshop on Manipulation under Uncertainty*, 2011.
- N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. *The Journal of Machine Learning Research*, 2005.
- H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels. *The Journal of Machine Learning Research*, 2002.

References III

- G. Luo, N. Bergström, C. H. Ek, and D. Kragic. Representing actions with Kernels. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2011.
- M. Salzmann, C. H. Ek, R. Urtasun, and T. Darrell. Factorized Orthogonal Latent Spaces. *International Conference on Artificial Intelligence and Statistics*, 2010.
- D. Song, C. H. Ek, K. Huebner, and D. Kragic. Embodiment-specific representation of robot grasping using graphical models and latent-space discretization. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2011a.

References IV

- D. Song, C. H. Ek, K. Huebner, and D. Kragic. Multivariate discretization for bayesian network structure learning in robot grasping. In *IEEE International conference on robotics and automation*, 2011b.
- M. Titsias and N. D. Lawrence. Bayesian Gaussian Process Latent Variable Model. In *International Conference on Artificial Intelligence and Statistics*, 2010.