

ORF-MOSAIC for Adaptive Control of a Biomimetic Arm

M. Mahdi Ghazaei Ardakani*, Henrik Jörntell**, and Rolf Johansson* * Dep. of Automatic Control and ** Exp. Medical Science Group Lund University, Sweden

How it began!

WALLENBERG NEUROCENTRU		

Outline

- Introduction
 - Cerebellum
 - Different cerebellar models
 - MOSAIC
- Problem formulation
- Modeling
- Methods
- Experimental Design
- Simulations
- Results
- Discussion
- Conclusions

Cerebellum and its Role

Microznoe circuitry

[1] Figure form Handbook of Robotics, Springer 2008,

Principles in Cerebellum

- Feedforward processing
- Divergence and convergence
- Modularity
- Plasticity

Computational Models

- Cerebellar Model Articulation Controller (CMAC)
- Adjustable Pattern Generator (APG)
- Schweighofer-Arbib
- Cerebellar feedback-error-learning model (CBFELM)
- Multiple paired forward-inverse model (MPFIM)

[1] Figure adapted form Handbook of Robotics, Springer 2008

MOSAIC Structure

- Internal Model
 - Forward Models
 - Inverse Models
- Modularity
- Adaptation
- Reduction of motor error
- Efference copy
- Spin-offs
 - HMM-MOSAIC
 - HMOSAIC
 - e-MOSAIC
 - MMRL
 - AMA-MOSAICI

MOSAIC based Models

- Original MOSAIC
 - Tested for switching between 3 objects, and generalizing to a new one
 - No of modules are manually tuned
 - Requires careful tuning of parameters
 - The quality of forward models are critical
- HMM MOSAIC
 - Same experiments as above
 - Probabilistic model using HMM
 - heavy computation
 - Fixed to linear forward models
 - Originally in batch mode
 - Improved parameter tuning and resp. estimation by EM

MOSAIC based Model

HMOSAIC

- Same experiments
- Two layers of MOSAIC
- Higher layer provides estimate of prior probabilities
- eMOSAIC
 - Humanoid robot control
 - LQG for controllers
 - Forward models replaced by Kalman filters
 - No adaptation
- AMA-MOSAICI
 - Sit-to-stand control
 - Clustering algorithm for determining no of modules
 - Clustering and training Off-line
- MMRL
 - Controllers are replaced by RL agents
 - Discrete and continuous case
 - Self-organization of modules
 - Haunting task in a grid world and controlling an inverted pendulum

MOSAIC based Model

- Toy problems
- More serious problems
 - Resorting to classic controllers or RL
 - Simplification
 - No dealy
 - No adaptation

Objectives

- Investigation of the applicability of a biologically inspired model of cerebellum to deal with:
- More complex embodiments
- Less accurate models (delays, noise, ...)

[1] Figure from F.M.M.O. Camposa, J.M.F. Calado, Ann. Rev. In Control 33 (2009), 70

Problem Statement

ORF-MOSAIC as a biologically inspired cerebellar model to adaptively control a human-like robotic arm with potential delays

- Models as faithful as possible to biology
- Fixes according well-established theories in control engineering

Modeling

- Motor Cortex (Trajectory Generation, ...)
- Cerebellum (MOSAIC)
- Sensory System and Lower Motor Control
- Arm
- Muscle Systems

Lower Motor Control

Musculoskletal Model

- Preserves essential features of an arm
- Mono-articular and bi-articular
- Hill-type muscle model

[1] Figure from Handbook of brain theory, MIT press, 1995

CONTRACTILE

SERIES ELASTIC

Assumptions

- Minimum jerk trajectory by CTX
- Planning in task space, control in joint space and transformation to muscle space
- Minimum tension principle for muscle control
- Internal model

Methods

- Linear models representing cellular structure
- Low level control represented by a feedback controller and a transformation
- Approximation to known adaptive controllers

Customization of MOSAIC

- Introduction of receptive fields for modules
- Dissociation of adaptation from control in a module
- Why different modules?
 - Taking care of different subtasks which are domains in state space
- Plasticity role?
 - Adapt existing internal models to cope with small changes in plant
 - To acquire new skills but no retention

Cerebellar Controller

Model of Arm

Minimum Tension Controller

minimize
$$\frac{1}{2}T^T T$$
 subject to $0 \le u \le 1$ and $\tau = \tau_{sp}$

- Convex optimization
- With some mathematical tricks reformulated to a quadratic programming problem

Simulation of Arm Constant muscle activation

16 6 6 16 6 6 16 6 6 10 0

Simulation of Arm Constant muscle activation

Simulation of Arm Minimum Tension

Simulation of Arm Minimum Tension

Z

End-2-end Simulation

Final Experimental Design

- 30 [ms] delay in the path to the cerebellar controller
- PD controller with stiffness parameter of human arm and no delay
- Movement 0.65 [s] , wait for 0.65 [s]
- 16 modules in a15x15 [cm] workspace
- External translation invariant force field in task space

$$f = B\dot{x},$$
 $B = \begin{bmatrix} -2.525 & -2.8\\ -2.8 & 2.775 \end{bmatrix} [\text{Nsm}^{-1}].$

Object : 60 [cm] rod with 2 [Kg], perpendicular to the arm

Mapping of modules to workspace

Numbering and color coding of modules

Samples of receptive fields in static configuration

Hand Trajectory

Feedback & Feedforward contributions

Before Training

After Training

Contributions from modules

Before Training

After Training

Controlling Modules

External Field Test

Handling an Object

Parameters Across Modules

With an object

Parameters Across Modules w/ External Field

Different trajectory

Discussion

- Learning of non-linearities by the cerbellar controller
- Specialization of modules with 7-parameters to different areas of the force field
- Trade-offs
 - Unit complexity vs. the number of modules
 - Unit adaptation vs. effective switching or combination
- How to localize the model in cerebellum and brain?
 - Microzones and modules
 - Biologically plausible signals

The second secon

Conclusion

- Cerebellar Model for Control Inspired by the Microzonal Structure
- Arm Model with Musculo-skeletal structure
- Adaptation to the changes in the load and external disturbances despite delay
- Highly sparse representation with not full knowledge of the model as a priority
- Model for distributed control and adaptation

