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What is the action?
Grasping a plate?
Putting plates upright?
Removing plates from the table?
Filling the dish washer?
Cleaning the kitchen?
So what does it mean to understand 
the meaning of an action?
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The meaning of an action is the state 
change that the physical movement 
of an actor causes to the world state 
space.
That can be on different levels of 
abstraction. At least, this is the goal.
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• What is the person doing?

Modeling Mutual Context of Object and Human Pose
in Human-Object Interaction Activities

Bangpeng Yao Li Fei-Fei
Computer Science Department, Stanford University, USA

{bangpeng,feifeili}@cs.stanford.edu

Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other – recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [12], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction
Using context to aid visual recognition is recently re-

ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3− 4% [7, 13].
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Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly
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• What is the person doing?
• Objects and actions are intertwined
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Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other – recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [12], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction
Using context to aid visual recognition is recently re-

ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3− 4% [7, 13].
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Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly
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• What is the person doing?
• Objects and actions are intertwined
• Objects prime actions, actions prime objects
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Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other – recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [12], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction
Using context to aid visual recognition is recently re-

ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3− 4% [7, 13].
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Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly
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perception and action share the same symbolic structure
spoken language and visible movements use same cognitive substrate
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• Objects and Actions are inseparably intertwined.

OBJECT ACTION COMPLEXES (OACS)
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• Objects and Actions are inseparably intertwined.

• Categories are determined (and also limited) by the action an agent can perform and by 
the attributes of the world it can perceive;
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• Objects and Actions are inseparably intertwined.

• Categories are determined (and also limited) by the action an agent can perform and by 
the attributes of the world it can perceive;

• Entities “things” in the world of a robot (or a human) will only become semantically 
useful “objects” through the action that the agent can/will perform on them. 

OBJECT ACTION COMPLEXES (OACS)
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• Object Action Complexes (OACs)
• Actions define the meaning of Objects
• Objects suggest Actions (affordance)
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• Object Action Complexes (OACs)
• Actions define the meaning of Objects
• Objects suggest Actions (affordance)

• OACs are associations of objects and affordances
• Affordances can be expressed by STRIPS like-rules   

• Associative memory ensures that
• Object representations (and other preconditions) evoke  

affordances 
• Representations of affordances (and other preconditions) evoke objects 
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• Affordances are “unidirectional”: Objects affords actions 

• OACs are “bidirectional”: Object affords actions      Actions suggest objects 

• OACs can be chained (new complex OACs from simpler OACs “Tasks from skills = 
Planning”) 

OACS  VS.  AFFORDANCES
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• action hierarchy

• Actions involve objects, Movements do not

• Action primitives are the atomic entities

• vital due to computational / combinatorial aspects
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• action hierarchy

• Actions involve objects, Movements do not

• Action primitives are the atomic entities

• vital due to computational / combinatorial aspects

Activities

Actions

Action Primitives

Movements

action primitives are atomic building blocks of actions. They
• are meant to change the world state in a specific manner 
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• action hierarchy

• Actions involve objects, Movements do not

• Action primitives are the atomic entities

• vital due to computational / combinatorial aspects

Activities

Actions

Action Primitives

Movements

action primitives are atomic building blocks of actions. They
• are meant to change the world state in a specific manner 
• require a certain world state 

ACTION PRIMITIVES WITHIN OACS
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• action hierarchy

• Actions involve objects, Movements do not

• Action primitives are the atomic entities

• vital due to computational / combinatorial aspects

Activities

Actions

Action Primitives

Movements

action primitives are atomic building blocks of actions. They
• are meant to change the world state in a specific manner 
• require a certain world state 
• can generate a specific change to world state
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• action hierarchy

• Actions involve objects, Movements do not

• Action primitives are the atomic entities

• vital due to computational / combinatorial aspects

Activities

Actions

Action Primitives

Movements

action primitives are atomic building blocks of actions. They
• are meant to change the world state in a specific manner 
• require a certain world state 
• can generate a specific change to world state
OACS  contain the sensing capabilities (visual, haptic, force torque)

ACTION PRIMITIVES WITHIN OACS
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Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other – recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [12], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction
Using context to aid visual recognition is recently re-

ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3− 4% [7, 13].

!"#$%&%'(#)*+,&-'$

.!"##/*#$0*%&.$#1'($)
2"%'("##3*$44#1*&*

2"'4+&.*.(!(#"%*
'$*'+&*'"%5&'

1)1.1"#*2"%'*
"22&"%")4&

2"'4+*#$$6.*
#(6&*7$*3*2"%'.

.&#8*$44#1.($)

',"*+,&-'$ !"#$%&%'(#)*+,&-'$ ',"*+,&-'$
9":*;1!")*2$.&*&.'(!"'($) 97:*<7=&4'*97"##:**&'&4'($)

Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly
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3

• using PHMMs for action recognition, where we require
to identify the effect and the action primitive based on
the observed movement.

Our concept is illustrated in Fig. 2 and it consists of the
following steps:

1) Non-supervised learning of action primitives: identify
the selection of necessary action primitives. This will
be done by analyzing the effects of the actions on
the objects, rather than the action trajectories directly
and store all the different performances of each of the
primitive in an action equivalence class. For example,
the equivalence class of the primitive reach for object
contains all action trajectories of the reach for object
primitive.

2) Build a parametric hidden Markov model (PHMM) for
each of these primitive classes based on the movement
trajectories and their effects.

3) Generate actions on robots that achieve a desired effect
and recognize action primitives and their effects from
the observed human actions.

In the following, we will discuss each of the steps in detail.
Each section contains its own experimental results.

Fig. 2: The figure shows the different steps involved in learning
actions.

III. UNSUPERVISED LEARNING OF ACTION PRIMITIVE
CLASSES ACCORDING TO THE Effect ON OBJECTS

In this section we discuss our approach to unsupervised
learning of action primitives based on the effect of the actions
on objects.

In the first two steps in Fig. 2, we evaluate the trajectories
that are caused by the human actions in the object state
space. For this purpose, let an action be represented by a pair
[Hi

t

Oi

t

] of hand and arm trajectories Hi

t

in movement space
M and object trajectories Oi

t

in object state space O . While
the trajectories Hi

t

in M are given by the marker locations
on the hand and arm, Oi

t

are given by the object locations
and orientations; i denotes the different demonstrations1. We
propose to analyze Oi

t

to detect joint trajectories across the
different action effects which gives rise to a set of primitives.

1The demonstrations are recorded using a VICON system and are then
automatically extracted from the continuous flow of movements.

This is an important difference from, e.g., [22], where human
joint data is used to identify action primitives. Having found
primitives in O , i. e., a segmentation for each of the Oi

t

into
these primitives, we become able to segment Hi

t

in the same
way. If done for all training movements, we obtain sets of
human trajectories where each set corresponds to a specific
primitive (specific effect) in O . In other words, each set is
an equivalence class of human movements modulo the effect
these movements have on the object state space.

As movements are considered to be equivalent if their effect
is the same, an obvious key question is how the quantization
of the object state space should be done. For example if O is
quantized in terms of the object locations, then, e.g., two
push movements are the same iff the complete 3D movements
relative to the initial object locations are the same up to
a predefined uncertainty. We have investigated in our work
a quantization that is based on the change of the object
location in terms of Euclidean coordinates, which we call here
Euclidean quantization.

The approach in this section provides us with a) sets of
movements that all have the same effect on the object with
respect to the chosen quantization of O and b) how precisely
the object states were changed by each of the movements. As
we will discuss in Sec. IV-A, both pieces of information will
be used during unsupervised training of a PHMM for each of
the detected equivalence classes.

Use object info
to segment O

Find primitives

Group primitives
with same effect
in the object space

Segment and
group primitives
in action space

in object space

Object spaceAction space

Input features
[H O]

Fig. 3: The input H and O denote the action and object
features. The object features are first analyzed and segmented.
This is then used to extract the primitives in the action space.
Magenta boxes correspond to analysis in the object state space,
while the cyan box represents analysis in the action space.

A. Modeling Object-Action Interactions as HMMs
In the first step we analyze the trajectories Oi

t

in order
to identify the primitives in the object state space O . Here,
the trajectories in O are 6D, describing the location and
the orientation of the object. All sequences Oi

t

available
in the database are processed sequentially and each one is
modeled as an ordered sequence of 6D Gaussians mixtures.
The trajectories are divided into pieces of approximately equal
length. Each of the segments is modeled with a Gaussian
where the mean and covariance is given by the mean and
covariance of that segment. This way we represent initially
each trajectory in the entire database as a left-to-right Hidden
Markov model (HMM) [23] (see also Sec. IV-A2). We denote
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UNSUPERVISED LEARNING OF  WORLD STATE SPACE

• Identify statistics in the effect space O

• Propagate the clustering of the effect space to the human action space H

3

• using PHMMs for action recognition, where we require
to identify the effect and the action primitive based on
the observed movement.

Our concept is illustrated in Fig. 2 and it consists of the
following steps:

1) Non-supervised learning of action primitives: identify
the selection of necessary action primitives. This will
be done by analyzing the effects of the actions on
the objects, rather than the action trajectories directly
and store all the different performances of each of the
primitive in an action equivalence class. For example,
the equivalence class of the primitive reach for object
contains all action trajectories of the reach for object
primitive.

2) Build a parametric hidden Markov model (PHMM) for
each of these primitive classes based on the movement
trajectories and their effects.

3) Generate actions on robots that achieve a desired effect
and recognize action primitives and their effects from
the observed human actions.

In the following, we will discuss each of the steps in detail.
Each section contains its own experimental results.

Fig. 2: The figure shows the different steps involved in learning
actions.

III. UNSUPERVISED LEARNING OF ACTION PRIMITIVE
CLASSES ACCORDING TO THE Effect ON OBJECTS

In this section we discuss our approach to unsupervised
learning of action primitives based on the effect of the actions
on objects.
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[Hi

t

Oi

t

] of hand and arm trajectories Hi

t

in movement space
M and object trajectories Oi

t

in object state space O . While
the trajectories Hi

t

in M are given by the marker locations
on the hand and arm, Oi

t

are given by the object locations
and orientations; i denotes the different demonstrations1. We
propose to analyze Oi

t

to detect joint trajectories across the
different action effects which gives rise to a set of primitives.

1The demonstrations are recorded using a VICON system and are then
automatically extracted from the continuous flow of movements.

This is an important difference from, e.g., [22], where human
joint data is used to identify action primitives. Having found
primitives in O , i. e., a segmentation for each of the Oi

t

into
these primitives, we become able to segment Hi

t

in the same
way. If done for all training movements, we obtain sets of
human trajectories where each set corresponds to a specific
primitive (specific effect) in O . In other words, each set is
an equivalence class of human movements modulo the effect
these movements have on the object state space.
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is the same, an obvious key question is how the quantization
of the object state space should be done. For example if O is
quantized in terms of the object locations, then, e.g., two
push movements are the same iff the complete 3D movements
relative to the initial object locations are the same up to
a predefined uncertainty. We have investigated in our work
a quantization that is based on the change of the object
location in terms of Euclidean coordinates, which we call here
Euclidean quantization.

The approach in this section provides us with a) sets of
movements that all have the same effect on the object with
respect to the chosen quantization of O and b) how precisely
the object states were changed by each of the movements. As
we will discuss in Sec. IV-A, both pieces of information will
be used during unsupervised training of a PHMM for each of
the detected equivalence classes.
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Fig. 3: The input H and O denote the action and object
features. The object features are first analyzed and segmented.
This is then used to extract the primitives in the action space.
Magenta boxes correspond to analysis in the object state space,
while the cyan box represents analysis in the action space.

A. Modeling Object-Action Interactions as HMMs
In the first step we analyze the trajectories Oi

t

in order
to identify the primitives in the object state space O . Here,
the trajectories in O are 6D, describing the location and
the orientation of the object. All sequences Oi

t

available
in the database are processed sequentially and each one is
modeled as an ordered sequence of 6D Gaussians mixtures.
The trajectories are divided into pieces of approximately equal
length. Each of the segments is modeled with a Gaussian
where the mean and covariance is given by the mean and
covariance of that segment. This way we represent initially
each trajectory in the entire database as a left-to-right Hidden
Markov model (HMM) [23] (see also Sec. IV-A2). We denote
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• Parameterization is here object location + (speed and direction). 
• Unsupervised learning of context-free grammar

• recursive construction of HMM
• Dirichlet Process
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• Dirichlet Processes generalize finite mixture models to infinite mixture models
• choice of mixture number is data-driven, similar to k-means clustering
• Dirichlet Process find the number of mixtures automatically.
• DPs and HDPs are unsupervised.Finite Mixture Model 

Gaussian 

Naïve Bayes 
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Slide partially borrowed from Teg Grenager
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Infinite Mixture Model 

ci 

xi N 

p θ 

α G0 

Slide partially borrowed from Teg Grenager
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Chinese Restaurant Process 

Slide partially borrowed from Teg Grenager
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• What we have now is 
• states: clusters of trajectories that all have the same effect
• detecting their grammatical relationship is trivial

Sanmohan, V. Krüger, D. Kragic, and H. Kjellström. Automatic Primitive Segmentation and Action Recognition. Advanced Robotics, 
25(6-7):871– 891, 2011. 

V. Krueger, Sanmohan, D. Herzog, A. Ude, and D. Kragic. Learning Actions from Observations. IEEE Robotics and Automation 
Magazine, 17(2):30–43, 2010. 
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• What we have now is 
• states: clusters of trajectories that all have the same effect
• detecting their grammatical relationship is trivial

• Next step builds a model for the observed actions within each cluster.

Sanmohan, V. Krüger, D. Kragic, and H. Kjellström. Automatic Primitive Segmentation and Action Recognition. Advanced Robotics, 
25(6-7):871– 891, 2011. 

V. Krueger, Sanmohan, D. Herzog, A. Ude, and D. Kragic. Learning Actions from Observations. IEEE Robotics and Automation 
Magazine, 17(2):30–43, 2010. 
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• What we have now is 
• states: clusters of trajectories that all have the same effect
• detecting their grammatical relationship is trivial

• Next step builds a model for the observed actions within each cluster.
• Issues: right parameterization!! What matters?

Sanmohan, V. Krüger, D. Kragic, and H. Kjellström. Automatic Primitive Segmentation and Action Recognition. Advanced Robotics, 
25(6-7):871– 891, 2011. 

V. Krueger, Sanmohan, D. Herzog, A. Ude, and D. Kragic. Learning Actions from Observations. IEEE Robotics and Automation 
Magazine, 17(2):30–43, 2010. 
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• Modeling clusters of trajectories 

• Parametric HMMs: Hidden Markov Models, that allow 
for parametric means and covariances

• Parameters have meaning 

• given by the object and the effects.

Wilson&Bobick, PAMI 99

The Fish 
was this big

PARAMETRIC HIDDEN MARKOV MODELS
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• Tell me the action and the object, 
and I know the movement (up to 
some uncertainty)!

• Action and parameters infer joint settings 
and pose: huge dimensionality 
reduction

• Tracking is simplified, synthesis is trivial

On the fly demo, monocular(!!) data

MODELING ACTIONS IN OBJECT ACTION SPACE
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• Action parameters in case of a table top scenario

•   : PHMM state, associated with a human pose

•       : object location on the table

•  : action identifier

w = (k, x, y)

k

x, y

i

TRACKING IN OBJECT ACTION SPACE
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• Action parameters in case of a table top scenario

•   : PHMM state, associated with a human pose

•       : object location on the table

•  : action identifier

w = (k, x, y)

k

x, y

i

TRACKING IN OBJECT ACTION SPACE

to be estimated, can be constrained
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• Action parameters in case of a table top scenario

•   : PHMM state, associated with a human pose

•       : object location on the table

•  : action identifier

w = (k, x, y)

k

x, y

i

P (!t, it|Z1 . . . Zt)) ⌘ pt(!t, it)

=
X

it�1

Z

!t�1

pt(Zt|!t, it)p(!t, ii|!t�1, it�1)pt�1(!t�1, it�1)d!t�1

TRACKING IN OBJECT ACTION SPACE

to be estimated, can be constrained

• Classical Bayesian Propagation over time
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RECOGNIZING ACTIONS
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• Parametric action recognition
• pointing, reaching, pushing and filling 

actions.
• parameters of the action are marginalized 

out

RECOGNIZING ACTIONS
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TRACKING IN OBJECT ACTION SPACE
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• Monocular and multi-view 
tracking

• red dot marks the active camera

• color of the ball is given by the 
parameter uncertainty

TRACKING IN OBJECT ACTION SPACE
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• 3x2 grid with 5 repetitions each.

• Integrated error along the trajectory

RECOVERY OF PARAMETERS

✏ =

vuut
Z 7X

i=1

(fi(↵(t))� f̄i(↵̄(t)))2

7
dt

�Z
↵(d)dt
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Same error as for human ground-truth trajectories(!)

Deviation Trajectory
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• Using more complex grammars

• Pick and Place actions

• Tracker switches between different action 
primitives
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Figure 23: Posterior Probabilities of the Actions A and B. The plot
shows the posterior probabilities pt(a = A) and pt(a = B) of the
actions A and B, respectively. The probabilities are calculated for
each frame of the tracked sequence shown in Figure 23. The blue
vertical lines indicate the frame when the person begins with the
performance of a new action. The first blue line indicates the begin-
ning of the performance of action A, and the second indicates the
beginning of the action B. The red vertical lines indicate the frames
when an object is grasped. The green lines indicate that the object
is placed.

A C

B

Figure 25: Grammar: Simple and Complex Pointing Actions.

Section 4.1. But in the case of a particle with a = C the
parameter ✓

1

is kept constant (no di↵usion). The handling
of a particle, which has a parameter ⌧ > 1, is discussed
in the following. The handling of such a particle reflects
the grammar and the proper concatenation of the actions.
A particle with ⌧ > 1 is handled depending on the action
type a 2 {A,B,C} given by the particle:
1. If a = A, a new action type a0 2 {B,C} is chosen ran-

domly. If a0 = C, the parameter ⌧ is replaced by ⌧ 0 = ⌧�1
and the parameter ✓

1

is not changed. (This corresponds to
a concatenation of the actions A and C to a simple point-
ing action, where both parts have the same parameters.)
If a0 = B, the parameters are modified as follows. The
parameter ⌧ is replaced by ⌧ 0 = ⌧ � 1. The parameter ✓

2

is replaced by ✓

0
2

= ✓

1

. The parameter ✓

1

is replaced by
a randomly chosen parameter ✓

0
1

. (This corresponds to a
concatenation of the actions A and B, where the action B
begins at the location ✓

0
2

which is the same location that
is given by the parameters of action A. The new location
✓

0
1

, to which the person will point, is unknown.)
2. If a = B, then a is replaced by a0 = C. The pa-

rameter ⌧ is replaced by ⌧ 0 = ⌧ � 1. The parameter ✓

1

is not changed. (This corresponds to a concatenation of
the actions B and C, where the arm is withdrawn from

the location ✓

1

which is the finally pointed to location of
a dual-pointing action (A,B,C).)

3. If b = C, then a is replaced by a0 = A. The parameter
⌧ is replaced by ⌧ 0 = ⌧ � 1. This case closes the “loop” of
the grammar.

The Trial. The Figure 26 shows a trial of two consecu-
tive performances of pointing actions. The trial is tracked
in real time with 8fps by using camera 2. First, a sim-
ple pointing action is performed, which is a concatenation
of the action primitives A and B. The corresponding im-
ages are in the first two rows of the figure. Below each
image, the histograms over ⌧ are given for each basic ac-
tion a 2 {A,B,C}. The histograms are explained in Fig-
ure 27. Second, a complex dual pointing action is per-
formed, which is a concatenation of the action primitives
A, B, and C. The images are given in the rows 3–5. The
color of the ball corresponds to the deviations of the pa-
rameters ✓

1

= (u, v). The procedure for calculating the
estimate ✓̂ = E[✓

1

] of the parameters (a pointed to loca-
tion) and the color is exactly the same as discussed for the
single actions in Section 4.1. It is worthwhile to note that
each ✓

1

encodes for each action A, B, and C the pointed
to location. In the case of the actions A and B this is an
unknown location, when a new performance of these basic
actions is started.

For the first simple pointing action (rows 1–2), the
ball becomes only light green for one time, i. e. when the
pointed to location is reached by the hand. For the sec-
ond action (rows 3–5), i. e. the dual-pointing action, the
ball becomes green when the first pointed to location is
reached by the hand. The ball becomes then orange. It
becomes green again when the second location is reached
by the hand. An interesting aspect of both performances
is the propagation of the particles of the action A, when
⌧ ⇡ 1. For the simple pointing action this is the case in
the first image of the 2nd row. The particles with ⌧ > 1
are propagated to particles of the actions B and C. How-
ever, the posterior probability p

t

(a = B) is very small and
can be seen only when one looks closely at the histogram
of action B. In the following image, the posterior prob-
ability p

t

(a = B) is still very small, but the probability
p
t

(a = C) becomes already significant. In the next image
the probabilities are p

t

(a = B) ⇡ 0 and p
t

(a = C) ⇡ 1.
For the complex dual-pointing action, the situation dur-
ing the transition from action A to the actions B and C
is very similar in the beginning. The transition happens
in the second image of the 4th row. In this image, the
situation is that p

t

(a = B) < p
t

(a = C). In the follow-
ing image it is p

t

(a = B) ⇡ p
t

(a = C). In the 4th image
of the row it becomes obvious that a dual-pointing action
is performed, the probabilities are here p

t

(a = B) ⇡ 1
and p

t

(a = C) ⇡ 0. In the last row the particles are
propagated after the second pointing motion to the ac-
tion C. The occurrence of a high posterior probability
p
t

(a = B, ⌧ 2 [0.5, 1.0]) enables one to distinguish the
dual-pointing action from the simple pointing action.
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Figure 23: Posterior Probabilities of the Actions A and B. The plot
shows the posterior probabilities pt(a = A) and pt(a = B) of the
actions A and B, respectively. The probabilities are calculated for
each frame of the tracked sequence shown in Figure 23. The blue
vertical lines indicate the frame when the person begins with the
performance of a new action. The first blue line indicates the begin-
ning of the performance of action A, and the second indicates the
beginning of the action B. The red vertical lines indicate the frames
when an object is grasped. The green lines indicate that the object
is placed.

Figure 25: Grammar: Simple and Complex Pointing Actions.

Section 4.1. But in the case of a particle with a = C the
parameter ✓

1

is kept constant (no di↵usion). The handling
of a particle, which has a parameter ⌧ > 1, is discussed
in the following. The handling of such a particle reflects
the grammar and the proper concatenation of the actions.
A particle with ⌧ > 1 is handled depending on the action
type a 2 {A,B,C} given by the particle:
1. If a = A, a new action type a0 2 {B,C} is chosen ran-

domly. If a0 = C, the parameter ⌧ is replaced by ⌧ 0 = ⌧�1
and the parameter ✓

1

is not changed. (This corresponds to
a concatenation of the actions A and C to a simple point-
ing action, where both parts have the same parameters.)
If a0 = B, the parameters are modified as follows. The
parameter ⌧ is replaced by ⌧ 0 = ⌧ � 1. The parameter ✓

2

is replaced by ✓

0
2

= ✓

1

. The parameter ✓

1

is replaced by
a randomly chosen parameter ✓

0
1

. (This corresponds to a
concatenation of the actions A and B, where the action B
begins at the location ✓

0
2

which is the same location that
is given by the parameters of action A. The new location
✓

0
1

, to which the person will point, is unknown.)
2. If a = B, then a is replaced by a0 = C. The pa-

rameter ⌧ is replaced by ⌧ 0 = ⌧ � 1. The parameter ✓

1

is not changed. (This corresponds to a concatenation of
the actions B and C, where the arm is withdrawn from

the location ✓

1

which is the finally pointed to location of
a dual-pointing action (A,B,C).)

3. If b = C, then a is replaced by a0 = A. The parameter
⌧ is replaced by ⌧ 0 = ⌧ � 1. This case closes the “loop” of
the grammar.

The Trial. The Figure 26 shows a trial of two consecu-
tive performances of pointing actions. The trial is tracked
in real time with 8fps by using camera 2. First, a sim-
ple pointing action is performed, which is a concatenation
of the action primitives A and B. The corresponding im-
ages are in the first two rows of the figure. Below each
image, the histograms over ⌧ are given for each basic ac-
tion a 2 {A,B,C}. The histograms are explained in Fig-
ure 27. Second, a complex dual pointing action is per-
formed, which is a concatenation of the action primitives
A, B, and C. The images are given in the rows 3–5. The
color of the ball corresponds to the deviations of the pa-
rameters ✓

1

= (u, v). The procedure for calculating the
estimate ✓̂ = E[✓

1

] of the parameters (a pointed to loca-
tion) and the color is exactly the same as discussed for the
single actions in Section 4.1. It is worthwhile to note that
each ✓

1

encodes for each action A, B, and C the pointed
to location. In the case of the actions A and B this is an
unknown location, when a new performance of these basic
actions is started.

For the first simple pointing action (rows 1–2), the
ball becomes only light green for one time, i. e. when the
pointed to location is reached by the hand. For the sec-
ond action (rows 3–5), i. e. the dual-pointing action, the
ball becomes green when the first pointed to location is
reached by the hand. The ball becomes then orange. It
becomes green again when the second location is reached
by the hand. An interesting aspect of both performances
is the propagation of the particles of the action A, when
⌧ ⇡ 1. For the simple pointing action this is the case in
the first image of the 2nd row. The particles with ⌧ > 1
are propagated to particles of the actions B and C. How-
ever, the posterior probability p

t

(a = B) is very small and
can be seen only when one looks closely at the histogram
of action B. In the following image, the posterior prob-
ability p

t

(a = B) is still very small, but the probability
p
t

(a = C) becomes already significant. In the next image
the probabilities are p

t

(a = B) ⇡ 0 and p
t

(a = C) ⇡ 1.
For the complex dual-pointing action, the situation dur-
ing the transition from action A to the actions B and C
is very similar in the beginning. The transition happens
in the second image of the 4th row. In this image, the
situation is that p

t

(a = B) < p
t

(a = C). In the follow-
ing image it is p

t

(a = B) ⇡ p
t

(a = C). In the 4th image
of the row it becomes obvious that a dual-pointing action
is performed, the probabilities are here p

t

(a = B) ⇡ 1
and p

t

(a = C) ⇡ 0. In the last row the particles are
propagated after the second pointing motion to the ac-
tion C. The occurrence of a high posterior probability
p
t

(a = B, ⌧ 2 [0.5, 1.0]) enables one to distinguish the
dual-pointing action from the simple pointing action.
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TRACKING IN OBJECT ACTION SPACE

• Dennis Herzog and Volker Krueger. Tracking in Action Space. In 
Human Motion: Understanding, Modeling, Capture and Animation, 
Workshop at ECCV 2010, 2010. Springer. 

• Dennis Herzog and Volker Krueger. Tracking in Action Space.  Int. 
Journal Computer Vision and Image Understanding (CVIU). submitted
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• HOAP3 robot

• arm movements are defined by 
PHMMs

• robot picks and places the objects

OBJECT-ACTION SPACE FOR ROBOT CONTROL

V. Krueger, Sanmohan, D. Herzog, A. Ude, and D. Kragic. Learning Actions from Observations. IEEE Robotics and Automation 
Magazine, 17(2):30–43, 2010. 

D. Herzog, A. Ude, and V. Krueger. Motion Imitation and Recognition using Parametric Hidden Markov Models. In Humanoids, 
IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, South, December 1-3, 2008 
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LEARNING OF ACTION PRIMITIVES

• Action primitives for motor control 
• Starting point: Khansari-Zadeh and Billard, Imitation 

Learning of Globally Stable non-linear Point-to-Point 
Robot Motions using Non-linear Programming, 
IROS2010

• SEDS-approach (see Billard’s and Calinon’s 
presentation)
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Fig. 6. The first experiment with the iCub. The robot does a semi-spiral
motion toward its right-side, and at the bottom of the spiral it stretches its
hand forward completely.

Figure 6 illustrates the results from the first task, where the
iCub starts the motion in front of its face. It then does a semi-
spiral motion toward its right-side, and finally at the bottom
of the spiral it stretches its hand forward completely. In the
second task, the iCub starts the motion close to its left fore-
hand. Then it does a semi-circle motion upward and finally
brings down its arm completely (see Figure 7). In the third
motion, the iCub performs a loop motion with its right hand,
where the motion lies in a vertical plane and thus contains a
self intersection point (see Figure 8). Critical to such kinds
of motion is the ambiguity in the correct direction of velocity
at the intersection point if the model’s variable ξ considered
to be only the cartesian position (i.e. ξ = x ⇒ ξ̇ = ẋ). This
ambiguity usually results in reproductions skipping the loop
part of the motion. However in this example, defining ξ such
that it includes both the cartesian position and velocity (i.e.
ξ = [x; ẋ] ⇒ ξ̇ = [ẋ; ẍ]) can solve this ambiguity. The three
experiments were learnt using 5, 4 and 7 Gaussian functions,
respectively. In all three experiments the robot is able to
successfully follow the demonstrations and to generalize the
motion for several trajectories with different starting points.

We also further examine SEDS in a library of 20 different
human handwriting motions recorded using a Tablet PC,
and compare it against our previous method Binary Merging
(BM) [9] and those of four alternative methods GMR, LWPR,
GPR, and DMP6. Figure 9 shows the results for 5 out of
20 motions. Quantitative performance comparison of all the
six methods is given in Table I. In this paper, we only
focus on the comparison between SEDS and our previous
approach BM. The detailed comparison between alternative
approaches and BM is provided by [9]. Here, we use the
same accuracy measurement proposed by [9], with which

6Because GMR requires a fixed set of Gaussians, we used the same
number of Gaussians as the one selected for the proposed approach.
Similarly, the number of Gaussians used in DMP was initialized with that
found by LWPR for the same task.
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Fig. 7. The second experiment with the iCub. The robot does a semi-circle
motion upward and then brings down its arm completely.
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intersecting motion.

a method’s accuracy in estimating the overall dynamics
of the underlying model f̂ is quantified by measuring the
discrepancy between the direction and magnitude of the
estimated and observed velocity vectors for all training data
points.
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) 1
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where r and q are positive scalars that weigh the relative
influence of each factor, and ε is a very small positive scalar.

Regarding Table I, while both BM and SEDS are able
to learn the demonstrated dynamics with relatively similar
accuracy, each method has its own advantages and disadvan-
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where the motion lies in a vertical plane and thus contains a
self intersection point (see Figure 8). Critical to such kinds
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6Because GMR requires a fixed set of Gaussians, we used the same
number of Gaussians as the one selected for the proposed approach.
Similarly, the number of Gaussians used in DMP was initialized with that
found by LWPR for the same task.
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• We model the movements using a dynamic model:
•     = Model parameters
•     = state vector

• To model    , a Gaussian mixture model is used:

• where

✓
⇠

⇠̇ = f(⇠; ✓) + ✏

P(⇠t,n, ⇠̇t,n) =
KX

k=1

⇡kN (⇠t,n, ⇠̇t,n; ✓k)

re-scaling. Inspired by human body motion, we show how
such a model can be used to integrate different motions into
one single dynamical system. Such modeling is especially
useful when one desires to execute a single task in a different
manner starting from different areas in space, mainly to
consider task constraints, to avoid robot’s joint limits, etc.
Next we formalize the method presented in this paper.

III. MULTIVARIATE MOTION LEARNING

In this section we proceed in three steps: First in Sub-
section III-A we restate the problem introduced in Eq. 1
in the statistical framework. Then in Subsection III-B we
derive the necessary and sufficient conditions to guarantee
the global stability of an arbitrary function f̂ . Then in
Subsection III-C we propose an optimization problem to
compute optimal values of the parameters θ∗ while satisfying
stability conditions.

A. Problem Formulation

We use a probabilistic framework and model f̂ via a
finite mixture of Gaussian functions. Using such an approach,
unknown parameters of f̂ become priors πk, means µk and
covariance matrices Σk of k = 1..K Gaussian functions (i.e.
θk = {πk, µk,Σk} and θ = {θ1..θK}). The mean and the
covariance matrix of a Gaussian k are defined by:

µk =

(
µk
ξ

µk
ξ̇

)
, Σk =

(
Σk

ξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(3)

Given a set of N demonstrations {ξt,n, ξ̇t,n}T
n,N

t=0,n=1, each
recorded point in the trajectories [ξt,n, ξ̇t,n] is associated with
a probability density function P(ξt,n, ξ̇t,n):

P(ξt,n, ξ̇t,n) =
K∑

k=1

πkN (ξt,n, ξ̇t,n; θk)

{
∀n ∈ 1..N
t ∈ 0..Tn (4)

where N (ξt,n, ξ̇t,n; θk) is given by:

N (ξt,n, ξ̇t,n; θk) =
1√

(2π)2d|Σk
ξ |
e−

1
2 ([ξ

t,n,ξ̇t,n]−µk)T (Σk)−1([ξt,n,ξ̇t,n]−µk) (5)

Taking the posterior mean estimate of P(ξ̇|ξ) yields (see
[14]):

ˆ̇ξ =
K∑

k=1

πkN (ξ; θk)
∑K

i=1 π
iN (ξ; θi)

(µk
ξ̇
+ Σk

ξ̇ξ
(Σk

ξ )
−1(ξ − µk

ξ )) (6)

The resulting nonlinear function f̂(ξ;θ) from Eq. 6 usu-
ally contains several spurious attractors or limit cycles (see
Figure 2). Thus parameters θ need to be determined that lead
to an estimate f̂(ξ;θ) with a single asymptotically stable
attractor.

B. Stability Analysis

Stability analysis of dynamical systems is a broad subject
in the field of dynamics and control, and can generally be di-
vided into two branches: linear and nonlinear systems. While
the stability of linear dynamics has been well studied [10]
and can be ensured solely by requiring that the eigenvalues
of the system are negative, stability analysis of nonlinear
dynamical systems is still an open questions and theoretical
solutions exist only for particular cases. In this paper, we
obtain the sufficient conditions to ensure the global stability
of a series of nonlinear dynamical systems given by Eq. 6.

We start by simplifying the notation of Eq. 6 through a
change of variable. Let us define:






Ak = Σk
ξ̇ξ
(Σk

ξ )
−1

bk = µk
ξ̇
−Akµk

ξ

hk(ξ) =
πkP(ξ;µk

ξ ,Σ
k
ξ )∑K

i=1 πiP(ξ;µi
ξ,Σ

i
ξ)

(7)

Substituting Eq. 7 into Eq. 6 yields:

ˆ̇ξ = f̂(ξ;θ) =
K∑

k=1

hk(ξ)(Akξ + bk) (8)

First observe that f̂ is now expressed as a non-linear sum
of linear dynamical systems. The nonlinear weighting terms
hk(ξ) in Eq. 8, where 0 < hk(ξ) ≤ 1, give a measure of the
relative influence of each Gaussian locally. Beware that the
intuition that the nonlinear function f̂(ξ;θ) should be stable
if all eigenvalues of matrices Ak are negative k = 1..K,
is not true. Here is a simple example in 2D that illustrates
why this is not the case and also why estimating stability of
non-linear DS even in 2D is non-trivial.

Example: Consider the parameters of a model with two
Gaussian functions to be:






Σ1
ξ = Σ2

ξ =

[
3 0

0 3

]

Σ1
ξ̇ξ

=

[
−3 −30

3 −3

]
, Σ2

ξ̇ξ
=

[
−3 3

−30 −3

]

µ1
ξ = µ2

ξ = µ1
ξ̇
= µ2

ξ̇
= 0

(9)

Using Eq. 7 we have:





A1 =

[
−1 −10

1 −1

]
, A2 =

[
−1 1

−10 −1

]

b1 = b2 = 0

(10)

The eigenvalues of both matrices A1 and A2 are complex
with values −1 ± 3.16i. In other words, each matrix deter-
mines a stable system. However, the nonlinear combination
of the two matrices as per Eq. 8 is stable solely when
ξ2 = ξ1, and is unstable in Rd \ {(ξ2, ξ1)|ξ2 = ξ1} (see
Figure 3).
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a probability density function P(ξt,n, ξ̇t,n):

P(ξt,n, ξ̇t,n) =
K∑

k=1

πkN (ξt,n, ξ̇t,n; θk)

{
∀n ∈ 1..N
t ∈ 0..Tn (4)

where N (ξt,n, ξ̇t,n; θk) is given by:

N (ξt,n, ξ̇t,n; θk) =
1√

(2π)2d|Σk
ξ |
e−

1
2 ([ξ

t,n,ξ̇t,n]−µk)T (Σk)−1([ξt,n,ξ̇t,n]−µk) (5)

Taking the posterior mean estimate of P(ξ̇|ξ) yields (see
[14]):

ˆ̇ξ =
K∑

k=1

πkN (ξ; θk)
∑K

i=1 π
iN (ξ; θi)

(µk
ξ̇
+ Σk

ξ̇ξ
(Σk

ξ )
−1(ξ − µk

ξ )) (6)

The resulting nonlinear function f̂(ξ;θ) from Eq. 6 usu-
ally contains several spurious attractors or limit cycles (see
Figure 2). Thus parameters θ need to be determined that lead
to an estimate f̂(ξ;θ) with a single asymptotically stable
attractor.

B. Stability Analysis

Stability analysis of dynamical systems is a broad subject
in the field of dynamics and control, and can generally be di-
vided into two branches: linear and nonlinear systems. While
the stability of linear dynamics has been well studied [10]
and can be ensured solely by requiring that the eigenvalues
of the system are negative, stability analysis of nonlinear
dynamical systems is still an open questions and theoretical
solutions exist only for particular cases. In this paper, we
obtain the sufficient conditions to ensure the global stability
of a series of nonlinear dynamical systems given by Eq. 6.

We start by simplifying the notation of Eq. 6 through a
change of variable. Let us define:






Ak = Σk
ξ̇ξ
(Σk

ξ )
−1

bk = µk
ξ̇
−Akµk

ξ

hk(ξ) =
πkP(ξ;µk

ξ ,Σ
k
ξ )∑K

i=1 πiP(ξ;µi
ξ,Σ

i
ξ)

(7)

Substituting Eq. 7 into Eq. 6 yields:

ˆ̇ξ = f̂(ξ;θ) =
K∑

k=1

hk(ξ)(Akξ + bk) (8)

First observe that f̂ is now expressed as a non-linear sum
of linear dynamical systems. The nonlinear weighting terms
hk(ξ) in Eq. 8, where 0 < hk(ξ) ≤ 1, give a measure of the
relative influence of each Gaussian locally. Beware that the
intuition that the nonlinear function f̂(ξ;θ) should be stable
if all eigenvalues of matrices Ak are negative k = 1..K,
is not true. Here is a simple example in 2D that illustrates
why this is not the case and also why estimating stability of
non-linear DS even in 2D is non-trivial.

Example: Consider the parameters of a model with two
Gaussian functions to be:






Σ1
ξ = Σ2

ξ =

[
3 0

0 3

]

Σ1
ξ̇ξ

=

[
−3 −30

3 −3

]
, Σ2

ξ̇ξ
=

[
−3 3

−30 −3

]

µ1
ξ = µ2

ξ = µ1
ξ̇
= µ2

ξ̇
= 0

(9)

Using Eq. 7 we have:





A1 =

[
−1 −10

1 −1

]
, A2 =

[
−1 1

−10 −1

]

b1 = b2 = 0

(10)

The eigenvalues of both matrices A1 and A2 are complex
with values −1 ± 3.16i. In other words, each matrix deter-
mines a stable system. However, the nonlinear combination
of the two matrices as per Eq. 8 is stable solely when
ξ2 = ξ1, and is unstable in Rd \ {(ξ2, ξ1)|ξ2 = ξ1} (see
Figure 3).

re-scaling. Inspired by human body motion, we show how
such a model can be used to integrate different motions into
one single dynamical system. Such modeling is especially
useful when one desires to execute a single task in a different
manner starting from different areas in space, mainly to
consider task constraints, to avoid robot’s joint limits, etc.
Next we formalize the method presented in this paper.
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of linear dynamical systems. The nonlinear weighting terms
hk(ξ) in Eq. 8, where 0 < hk(ξ) ≤ 1, give a measure of the
relative influence of each Gaussian locally. Beware that the
intuition that the nonlinear function f̂(ξ;θ) should be stable
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RESULTS

• Results for 3D movement “Letter N” captured with iCub: 4 Gaussians

Location VelocityFig. 9. This figure shows the “Letter N” movement. The left image shows
the Cartesian movement of the iCub hand in 3D space, the right image
shows the velocity. See text for further explanations. Units are mm (left)
and mm/s (right).

Fig. 10. This figure shows the “Letter S” movement. The left image shows
the Cartesian movement of the iCub hand in 3D space, the right image shows
the velocity. See text for further explanations.Units are mm (left) and mm/s
(right).

“M” movement, and the CIGMM resulted always in a single
Gaussian mixture. It is interesting to mention that we did
not manage to find a dynamic model for the “M” using [7],
either.

Our approach has only a very limited number of parame-
ters. The most important parameters are the number of Gibbs
sampling cycles, and the number of optimization steps per
cycle, but from our experimental results it appears that the
settings that we have found above are successfully working
in all our experiments.

V. CONCLUSIONS

In this paper we have presented a novel approach for
generating a NLDS to model robot movements. Starting point

Fig. 11. This figure shows the “Letter C” movement. The left image shows
the Cartesian movement of the iCub hand in 3D space, the right image shows
the velocity. See text for further explanations.Units are mm (left) and mm/s
(right).

for our work is an earlier work by Khansari-Zadeh et al.
[7] which uses a finite Gaussian mixture model (FGMM)
to learn a non-linear dynamic system from training data. A
problem with that approach is the fact that the number of
mixtures of the FGMM needs to be known a-priori. Our
approach removes this requirement and allows to learn a
model from training data such that the model complexity
reflects the complexity of the training data.

We consider this work as an important starting point
for building hierarchical models for robot movements and
the unsupervised detections of motion primitives. We see
the CIGMM as the basis for hierarchical topic models
such as hierarchical Dirichlet processes (HDP) [13], [12].
These models have been used, e.g., to automatically recover
topics from document corpora and to identify words that
are representative for these topics. The problem with the
standard topic models such as latent Dirichlet allocation
(LDA) [13], [3] or HDPs is that these two, as used mainly in
the literature, usually assume discrete inputs. For example, in
[13], surveillance data was heavily discritized into a small
number of waking directions and locations. For modeling
robot movements and movement dynamics, the CIGMM
allows to replace this ad-hoc discritization with another layer
within the topic models that models the typical structure of
the movement data.

Acknowledgement: The authors would like to thank M.
Khansari-Zadeh for the valuable discussions and assistance
with his matlab code. Volker Krüger was supported by the
Istituto Italiano di Tecnologia.
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• Results for 3D movement “Letter S” captured with iCub: 4 Gaussians

Location Velocity

Fig. 9. This figure shows the “Letter N” movement. The left image shows
the Cartesian movement of the iCub hand in 3D space, the right image
shows the velocity. See text for further explanations. Units are mm (left)
and mm/s (right).

Fig. 10. This figure shows the “Letter S” movement. The left image shows
the Cartesian movement of the iCub hand in 3D space, the right image shows
the velocity. See text for further explanations.Units are mm (left) and mm/s
(right).

“M” movement, and the CIGMM resulted always in a single
Gaussian mixture. It is interesting to mention that we did
not manage to find a dynamic model for the “M” using [7],
either.

Our approach has only a very limited number of parame-
ters. The most important parameters are the number of Gibbs
sampling cycles, and the number of optimization steps per
cycle, but from our experimental results it appears that the
settings that we have found above are successfully working
in all our experiments.

V. CONCLUSIONS

In this paper we have presented a novel approach for
generating a NLDS to model robot movements. Starting point

Fig. 11. This figure shows the “Letter C” movement. The left image shows
the Cartesian movement of the iCub hand in 3D space, the right image shows
the velocity. See text for further explanations.Units are mm (left) and mm/s
(right).

for our work is an earlier work by Khansari-Zadeh et al.
[7] which uses a finite Gaussian mixture model (FGMM)
to learn a non-linear dynamic system from training data. A
problem with that approach is the fact that the number of
mixtures of the FGMM needs to be known a-priori. Our
approach removes this requirement and allows to learn a
model from training data such that the model complexity
reflects the complexity of the training data.

We consider this work as an important starting point
for building hierarchical models for robot movements and
the unsupervised detections of motion primitives. We see
the CIGMM as the basis for hierarchical topic models
such as hierarchical Dirichlet processes (HDP) [13], [12].
These models have been used, e.g., to automatically recover
topics from document corpora and to identify words that
are representative for these topics. The problem with the
standard topic models such as latent Dirichlet allocation
(LDA) [13], [3] or HDPs is that these two, as used mainly in
the literature, usually assume discrete inputs. For example, in
[13], surveillance data was heavily discritized into a small
number of waking directions and locations. For modeling
robot movements and movement dynamics, the CIGMM
allows to replace this ad-hoc discritization with another layer
within the topic models that models the typical structure of
the movement data.
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WORKS GREAT!

• Results for 3D movement “Letter C”: Comparison Training vs Simulation

Location Velocity
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Fig. 5. This figure shows the results on the 2D movement
”Multi Models 1”. Units are in mm.
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Fig. 6. This figure shows the results on the 2D movement
”Multi Models 1”. Units are in mm.

fact that we have stopped the Gibbs sampler after 1500 cycles
and that probably none of the two presented results are equal
to the global optimum.

Next, we tested our approach with the 3D iCub data from
[7] where the authors used motion capture devices to record
the demonstrations. Here, we have used 1500 cycles of the
Gibbs sampler and 30 optimization steps for each of the
last 200 Gibbs samling cycles. If compared to the results
presented in [7], one can see that the results are closely
related. Also the computed accuracy of our models is in
the same range as the model accuracy in [7]. See Figs. 7
and 8 for examples. In these Figs. the left image shows the
3D trajectory and the right image shows the velocity in 3D.
The red curves mark the training data, the blue curves mark
generated trajectories.

Finally, we have recorded our own 3D iCub data and tested
the data against our approach as well as against the approach
in [7]. Instead of using motion capture technologies, the
demonstrations were performed by physically driving the
robot. The data included a set 5 repetitions of reaching move-
ments as well as movements drawing the letters N,C,G,M,
and S in the air, see Figs. 9–11 for three example results. In
these images, the left image shows again the 3D cartesian
movement of the iCub hand, the right image shows again the
velocity in 3D. In these images, we have superimposed the
recovered Gaussians as spheres. The different colors mark
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Fig. 7. This figure shows the results on the semi-spiral motion toward its
right-side (compare with Fig. 6 in [7]). The red curves mark the training
data, the blue curves mark generated trajectories.Units are mm (left) and
mm/s (right).
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Fig. 8. This figure shows the results a semi-circle motion upward where
the robot then brings down its arm completely (compare with Fig. 7 in
[7]). The red curves mark the training data, the blue curves mark generated
trajectories.Units are mm (left) and mm/s (right).

the class-memberships given by the random variable c, i.e.,
which part of the curve is modeled by which Gaussian. It
should be noted that the movements were cropped so that
the depicted velocities in the right images do not start and
end at velocity 0.

As above, we used the following parameter settings: 1500
Gibbs sampling cycles, 30 optimization steps for the re-
maining 200 Gibbs cycles. These settings gave immediately
satisfactory results so that no further parameter tuning was
necessary. We have computed 50 different models for each
movement in the dataset in order to get a good statistic
for the recovered number of mixtures and the quality of
the computed dynamical model. The recovered number of
mixtures correlated at least most of the time with our
intuition: we had commonly two mixtures for the reaching
movement, three for “N” and “C” four for “G” and “S”. Fig.
9, and Fig. 11 show examples where more mixtures were
generated. The reason is due to the large variance across
performances. This is particularly well visible in Figs. 9,
where the diagonal part of the “N” is modeled with two
Gaussians. A similar situation is visible in Fig. 11. It should
be pointed out that the resulting dynamical systems worked
equally well.

In all cases, the Gibbs sampling during the first 1300 cy-
cles, i.e., without the optimization, was successful. However,
in ⇡ 7% of the cases, optimization failed during the final
200 cycles . We were able to observe two different types of
failures: in the first type, even though the resulting mixture
appeared reasonable, the CIGMM did not converge to a
solution that fulfilled the requirements for a stable dynamical
system, and the resulting dynamical systems model diverged.
It appears that this problem can be solved through a larger
number of Gibbs sampling cycles. In the second case, the
number of mixtures in the CIGMM reduced to just one single
mixture while the covariance of the mixture was equivalent to
the covariance of the training data. Essentially, the CIGMM
failed to find the proper structure and considered the entire
training set as noise. The reason why this happens for the
CIGMM but not for the IGMM is not yet clear and requires
further investigation. For the letter “M”, our approach failed.
Here, the reason appears to be the fact the variance across the
different repetitions of the “M” movements was indeed very
large compared with the variance within each movement.
Our approach failed to identify the specific structure of the

Krüger et al. Imitation Learning of Non-Linear Point-to-Point Robot Motions using Dirichlet Processes. ICRA 2012
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SPIRIT OF OACS FOR INDUSTRIAL 
ROBOTS
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SKills are OACS for Industrial Applications
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• pre- and post-conditions: Important for 
robustness and planning

• STRIPS-like planner

• Markov Decision process

SKills are OACS for Industrial Applications
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• pre- and post-conditions: Important for 
robustness and planning

• STRIPS-like planner

• Markov Decision process

SKills are OACS for Industrial Applications

Problem: Finding the right set of skills
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VOCABULARY OF  TASKS

• analyzed 566 tasks at Grundfos
• task implementations
• standard operation procedures 

(SOPs)

Queries on the state variables and input parameters (which
are provided at task-level programming time) serves as a
means of testing if the preconditions of the skill execution
are met, either by prior knowledge or ad hoc inspection. If
the preconditions are satisfied, the skill is executed based on
the parameters and the state variables. Parameters are thus
stored in the task description and are for instance objects or
locations, e.g. <red box> for the locate or pick up
skill or <warehouse> for the move to skill.

The postconditions are two-part in relation to the skill;
prediction and evaluation. The prediction specifies formally
what the expected effect of executing the skill is, and can thus
be used to select an appropriate skill for achieving a desired
goal state. The evaluation checks that the state variables after
execution is within an expected range and updates the state
variables to reflect the actual state after the skill execution.

Since skills are goal-oriented, the postconditions of a skill
must predict a change in the state variables. This change can
either occur by letting the robot interact with objects or by
letting the robot inspect the scene to gain further information
on the task state. As such, no change is the environment is
required, as task state can be updated to include the required
information purely by ad hoc inspection.

According to our vision, we want to set up industrial robot
tasks on the task level. To do this we need to identify what
skills the robot has/needs in the possible application domains
of flexible mobile manipulators. By using the definition of
skills presented in this section, we now look for these patterns
in real-world industrial scenarios.

III. SKILL BASED ANALYSIS OF INDUSTRIAL
APPLICATIONS

Two approaches are taken in order to identify skills for
industrial applications. Firstly, the skills are found through
analysis of industrial tasks, industrial implementations and
laboratory experiments - Fig. 2 top - and secondly, skills are
identified through analysis of Standard Operating Procedures
(SOP), which are descriptions of how tasks are manually
performed by the operators, hence human-action to robot skill
mapping - Fig. 2 bottom.

One important aspect of the analysis is that it is implicitly
based on the natural language and communication between the
people who work in the production, so the identified skills are
identified based on what one finds intuitive for the given task
held against the definition of skill.

A. Analysis

In Bøgh et al. [4] more than 566 industrial tasks have
been analyzed to identify the application categories potentially
suitable for mobile manipulators, shown in Fig. 3. In this work,
three classes of logistic tasks (transportation, multiple part
feeding and single part feeding) and two classes of assistive
tasks (machine tending and assembly) are investigated to
identify which skills are needed in these particular categories.

Fig. 2. Background for Analysis - Industrial Implementation, Laboratory
Testing and Analysis of Standard Operating Procedures (SOP)

Fig. 3. General application categories for AIMM. Green - focus for first
approach: analysis of industrial implementation and laboratory test. Blue -
focus for second approach: analysis of Standard Operating Procedures

In logistics tasks, the robot needs to cover larger distances
so the mobility of the mobile manipulator is an essential factor.
For assistive tasks there can also be a need for mobility, but
typically in a more limited production area. Assistive tasks are
generally more value-adding tasks compared to logistic tasks.

1) Analysis of Logistic Tasks: In Fig. 4 the three logistic
tasks are illustrated with images provided by the industrial
partner. The basic skill sequences for transportation, multiple
part feeding and single part feeding are presented in the
following.

Transportation is the process of transporting parts and work
pieces between workstations and storages. Transportation tasks
contain physical separation larger than the workspace of the
robot manipulator. In general, many of the applications are
based on transportation as there is typically some kind of
transport of equipment or parts involved. However, in basic
transportation tasks, there is not necessarily any direct contact
or communication with production machines nor is there any
advanced manipulation involved, i.e. only a few degrees of
freedom is required (e.g. a forklift, as opposed to a robot
arm). In Fig. 5 the general skill sequence for transportation is
illustrated, where the mobile manipulator moves to the storage
in order to pick up a pallet or container with parts, then move
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VOCABULARY OF SKILLS

Fig. 8. Standard Operating Procedure for operators (example pages)

into larger or completed parts. Pre-assemblies are typically
carried out before assemblies as semi-finished goods.

An example of instructions in a SOP for assembly could be;
Pick up the rotor from the fixture or Place the valve into the
rotor shaft. This will respectively result in a pick up skill and
place skill. In a machine tending task, an example could be:
Open machine door or Press or push Start button to start the
process, which would result in an open skill and press/push
skill. All the skills found in the analysis of SOPs are seen in
the list below.

• Pick up <object>
• Place <object, coordinate>
• Locate <object>
• Press <object>
• Check <object>
• Align <object, object>
• Open <object>
• Close <object>
• Release <object>
• Turn <object>

As in the case with the skills found for logistic tasks,
customized skills are usually also needed for some tasks, but
the skills identified here are the very basic to handle machine
tending and assembly operations.

B. Results - Skill Portfolio
Two approaches have been taken in identifying relevant

skills for industrial mobile manipulators through analysis of
industrial tasks. The result is a portfolio containing a small
number of skills applicable for a subset of logistic and service
tasks within the AIMM domain. An overview of the identified
skills are shown in Table I, where a formal description is given
for each skill.

Task descriptions can often be provided as an SOP. SOPs
therefore provide a good basis for identification of relevant
robot skills that are more easily understood by the actors
because they are based on the natural language used in the

Skill Description

Move to To go from one location (station) to an-
other in the factory

Locate To determine or specify the position of an
object by searching or examining

Pick up To take hold of and lift up
Place To arrange something in a certain spot or

position
Unload Unload a container: to remove, discharge

or empty the contents from a container
Shovel To take up and move objects with a shovel
Check Quality control: the act or process of test-

ing, verifying or examining
Align To make an object come into precise

adjustment or correct relative position to
another object

Open To move (as a door) from a closed position
and make available for entry, passage or
accessible

Close To move (as a door) from an open position
Press To press against with force in order to

drive or impel.
Release To let go or set free from restraint e.g.

release a button
Turn To turn a knob or handle

TABLE I
SKILL PORTFOLIO

production. By defining a skill in the skill model makes
information available that can be used by the engineer, robotic
system integrator, robot skill specialist and the operator. This
is described in the following section.

IV. IMPLEMENTATION RECOMMENDATIONS

This section aims to presents the considerations relevant
for implementing task-level programming on industrial robots.
As such, the proposed concept of task-level programming is
presented in this section. Although some challenges are not
foreseeable, experience gives some clue as to what might
present the immediate challenges in the implementation. A key
consideration for these recommendations is how to integrate
the different types of actors involved in creating robotic
systems in an implementation architecture for task level robot
programming.

A. Implementation layers
Fig. 9 shows how a three layered architecture for flexible

robot can look like. The architecture is similar to what is
the presented by Gat [12] and Björkelund et al. [6]. Im-
posing constraints on the implementation, as using layered
architectures and setting up a skill model with a defined
structure, is a step in a different direction than component-
based architectures like ROS [3] and OROCOS [9], which
focuses on providing great freedom to the individual compo-
nent designers. That fits well with the demands of researchers,
creating their own components, but for other actors to be able
to reuse the components, the lack of structure and well defined
pre- and postconditions makes it difficult to determine when
a component is applicable.[8] Component-based middleware
may however be a feasible way to implement a layered

6 Transportation Skills 10 Assistive Skills

 
• Move to <location>
• Locate <object>
• Pick up <object>
• Place <object, coord>
• Unload <container, coord> 
• Shovel <container, coordinate>

• Pick up <object> 
• Place <object, coordinate> 
• Locate <object> 
• Press <object>  
• Check <object> 
• Align <object, object> 
• Open <object> 
• Close <object> 
• Release <object> 
• Turn <object>

Skill-complete with 13 skills
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PROGRAMING USING SKILLS
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SENSING IS THE KEY
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SENSING IS THE KEY
Grasping Skill(object)

prior state
•object is in field of view --> provides 3D coord
•object is graspable (use 3D coord)
•distance to object
•grasping trajectory exists
execute grasping trajectory. Use force torque to already after the actual 
grasp verify for success
posteriori:
•object is in the gripper
•location within the robot body space
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PLACE-SKILL(LOCATION)
• prior

• location in {table, shelf, magazin} (location given as bar code)

• empty <location> is available and reachable

• is the gripper free?

• execute place skill + simultaneous verification using force torque

• poterior

• empty gripper

• location not empty anymore

• arm back in robot body space (note: breaching the robot body space: moving skills may not lead to a breach, but 
manipulation skills may)
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IMPLEMENTATION LAYERS

• Generalized Plans on different levels
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PROGRAMING USING SKILLS

• programs can be generated automatically using a 
planner
•  probabilistic using Markov decision process
•  binary using STRIPS planner

See the demo here:
 feeding Demo.mov - YouTube
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PROGRAMING USING SKILLS

• programs can be generated automatically using a 
planner
•  probabilistic using Markov decision process
•  binary using STRIPS planner

•gripper: full/empty
•magazin: filling level
•robot location: discrete: 

•home
•warehouse
•feeder 1,2,3...

•SLC full/empty
•feeder: empty, apparently full, fullSee the demo here:

 feeding Demo.mov - YouTube
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• Object-Action Complexes

• Unsupervised learning of  action grammar based on effects of the observed actions

• Modeling of human actions using SEDS-DMPs and PHMMs

• only tested on simple scenarios, not clear how well it will scale

• hand-generated “OCAs” / Skills for industrial scenario

• Are OACs are good choice for industrial applications?

• What about assembly tasks?

• How should the skills be for collaboration? event-driven rather than effect-driven?

SUMMARY + CONCLUSIONS
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THANKS
Questions? Comments?

www.m-tech.aau.dk/Research+Groups/Robotics+and+Automation/
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