Transferring Human Skills to Humanoid Robots

Dongheui Lee <u>dhlee@tum.de</u>

Dynamic Human-Robot-Interaction for Automation Systems (HRI) Lab Department of Electrical Engineering and Information Technology Technical University of Munich

Transferring Human Skills to Humanoid Robots

Movements

- learning motion
- recognition
- reproduction

Manipulation

- whole body coordination
- grasping skills
- interaction
 force control
 policy

Pysical HRI

- contact
 estabilishment
- physical coaching
- haptic assistance in collaboration

Programming by Demonstration

Monkey Brain: F5

Activities of Mirror Neuron (F5)

[Gallese et al.1996] [Rizzolatti et al. 1996].

Programming by Demonstration

Mathematical formulation of Mirror Neurons

- Mimesis Model
- Probabilistic representation for spatiotemporal data
- Learning, recognition, generation (a bidirectional computational model)
- Mimesis from partial observation [Lee and Nakamura IJRR 2010]

Programming by Demonstration

Mathematical formulation of Mirror Neurons

- Mimesis Model
- Probabilistic representation for spatiotemporal data
- Learning, recognition, generation (a bidirectional computational model)
- Mimesis from partial observation [Lee and Nakamura IJRR 2010]

[Lee and Nakamura IJRR 2010]

Motion Recostruction from Monocular Vision

Recognition from Optical Flow

Biological Movement [Johansson 1975]

 \rightarrow Aim to recognize and recover the motion from the optical flow of feature points

Motion Recostruction from Monocular Vision

[Lee and Nakamura IROS 2007]

Human perception of biological movements

- Activity recognition
 - 6 motions
- Motion Capturing 56DOF

Transferring Human Skills to Humanoid Robots

Movements

- learning motion
- recognition
- reproduction

Manipulation

full body coordination
grasping skills
interaction force control

policy

Pysical HRI

- contact
 estabilishment
- physical coaching
- haptic assistance in collaboration

Grasping Skill Learning from Motion and Force Data

- Learning grasping skills from motion and force patterns
- Teleoperation using Cyberglove, Flock of Birds, & Cybergrasp (Haptic Feedback)

Grasping Skill Reproduction

• Parallel position (PD) and force (PI) control

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau - J^{T}f$$
$$\tau = k_{p}e_{p} + k_{d}\dot{e}_{p} + J^{T}\{f_{d} + k_{f}\int e_{f}dt\}$$

Learning Interaction vs. Internal Forces

Generalization Capability: Radius

r[cm]	max()	$f^{in})[N]$	\overline{f}^{ir}	^{<i>i</i>} [N]	ΔT	'[ms]
3.6	3.21	_*	3.20	_*	28	_*
4.0	3.21	5.41	3.20	5.10	11	209
4.8	3.21	7.12	3.20	7.04	39	371
5.6	3.21	12.92	3.20	12.84	88	531
6.0	3.21	_*	3.20	-*	106	_*
Force control	ON	OFF	ON	OFF	ON	OFF

* unsuccessful grasping attempt

Transferring other manipulation skills

- Mechanism for Association of Whole Body Motion from Tool Knowledge
 - Tool in Body Schema [Maravita and Iriki 2004]
 - e.g. Distal-type neurons
 - [Lee et al IROS2008] [Kunori,Lee,NakamuraIROS2009]

- Learning interaction control policies
 - Dynamic movement primitives for parallel position and force control
 - Deformable objects, sculpting tasks
 - □ [Koropouli, Lee, Hirche, 2011 IROS]

Transferring Human Skills to Humanoid Robots

Movements

- learning motion
- .
- recognition
- reproduction

Manipulation

- whole body coordination
- grasping skills
- interaction
 force control
 policy

Pysical HRI

- contact
 estabilishment
- physical coaching
- haptic assistance in collaboration

Simple Human Robot Interaction

AUTOMATICA 2010 Collaboration with Dr. Ott, Dr. Albu Schaeffer, Haddadin, DLR

Mimetic Communication [Lee et al IJRR 2010]

Motivation: Motion → Interaction

From the Movie "Terminator 2 Judgment Day" Issues for pHRI:

- ✓ Human motion imitation → Marker Control
- ✓ Learn/Recognize/Generate Motion Primitives → Mimesis Model
- ✓ Learn/Recognize/Generate Interaction Rules → Mimetic Communication Model
- ✓Contact transition → Real-time motion adaptation
- ✓ Application : High-Five like interaction

Motion Imitation by Marker Control

Dynamics of the humanoid's upper body on a free-floating base body:

$$M(q) \begin{pmatrix} \ddot{q} \\ \ddot{x} \end{pmatrix} + C(q, \dot{q}, \dot{x}) \begin{pmatrix} \dot{q} \\ \dot{x} \end{pmatrix} = \begin{pmatrix} \tau \\ f \end{pmatrix}$$

Virtual Springs:

$$V_{i}(q,x) = \frac{1}{2}k_{i}\left\|r_{d,i} - r_{i}(q,x)\right\|^{2}$$

Measured marker position

Marker pos. of the simulation

$$\begin{pmatrix} \tau \\ f \end{pmatrix} = -D(q) \begin{pmatrix} \dot{q} \\ \dot{x} \end{pmatrix} + \sum_{\forall i \in M} k_i J_i^T(q) (r_{d,i} - r_i(q, x))$$

Motion Imitation by Marker Control

- Upper body Control: Marker trajectory following
- Lower body Control: Balancing, Hip orientation and Height following

[Ott, Lee, Nakamura, "Motion Capture based Human Motion Recognition and Imitation by Direct Marker Control", Humanoids 2008]

Full Body Motion Imitation

Prediction-based Synchronized Human Motion Imitation by a Humanoid Robot

Kai Hu (TU Munich) José Ramón Medina Hernández (TU Munich) Dongheui Lee (TU Munich)

Motion Learning → Interaction Learning

Mimetic Communication Model learning, recognition & generation of interaction primitives

- How to react to human's action
- Contact location & timing

Physical Contact Establishment

- Adaptation of the robot's motion to the desired contact point in real-time:
 - 1) Use additional spring (red) connected to the desired contact point.
 - 2) Project the forces of the hand's marker springs (green) into a subspace related to the hand orientation.

$$\begin{pmatrix} \tau \\ f \end{pmatrix} = -D(q) \begin{pmatrix} \dot{q} \\ \dot{x} \end{pmatrix} + \sum_{\forall i \in M \setminus H} k_i J_i^T(q) (r_{d,i} - r_i(q, x))$$

$$+ \sum_{k=R,L} J_{h,k}^T(q) \begin{pmatrix} \delta_k F_{h,k} + (1 - \delta_k) F_{w,k} \\ T_{w,k} \end{pmatrix}$$
Distance information

Distance information → smooth transition contact/non-contact

- Position control \rightarrow (Position based) Impedance control
 - \checkmark Limiting the contact forces
 - ✓ Implementing "smooth" contact

Experiments

- 12 motion primitives and 8 interaction primitives
- Implementation to humanoid robot (38DOF), 30DOF is controlled.
- Position based Impedance Control to the Upper body

[Lee, Ott, Nakamura, ICRA 2009] [Lee, Ott, Nakamura, IJRR 2010]

Physical coaching [Lee & Ott, Autonomous Robots 2011]

Mimetic Communication [Lee et al IJRR 2010]

Demonstration Technique

Observational Demo

Kinesthetic Demo

÷	synchronized whole body motion	Unsynchronized body motionAccidental disturbance	
	correspondence problem	No correspondence problem	÷

Overview

Motion Primitives

Compliant Control

Requirements

- 1. Precise tracking in free motion for motion primitive generation
- 2. Compliant interaction with low stiffness during teaching
- 3. Refinement tube: Limit the allowed deviation from the motion primitive

Integration into customized impedance controller

$$\tau = g(q) + M(q)\ddot{q}_d + C(q,\dot{q})\dot{q}_d - D\dot{\tilde{q}} - s(\tilde{q})$$

Experiments – Physical Coaching

Impedance Control and Motion Refinement Tube

Without tube

With tube

Undesired accidental disturbance

Guide for easy physical coaching

Incremental Refinement

Motion Retargeting from human body motion

Motion Refinement by Kinesthetic Coaching

Refined Robot Motion

Incremental Learning : Unsupervised Segmentation and Clustering

Parallel Learning, Prediction, Execution

Experiment in 2D Virtual Scenario

- 2D virtual scenario
- No initial knowledge
- As learning proceeds, prediction starts
- Robot behavior is changed from "passive follower" to "load sharing"

Experiment

Conclusion

Movements

mirror neuron
 → mimesis
 model
 self vs others
 motion skills
 learning &
 recognition

Manipulation

 grasping skills from position and force patterns

Pysical HRI

learning pHRI tasks (give-mefive)
physical coaching for incremental learning
Human intention recogntiion for collaboration

Safe and Autonomous Physical Human-Aware Robot Interaction

SEVENTH FRAMEWORK

Additional Questions? Email: <u>dhlee@tum.de</u>

Acknowledgement

www.cotesys.org