

Some Thoughts on Robot Intelligence

Hanyang University II Hong Suh

2012.4.17

4.5 Ga : 1.8 Ma = 1 day : 34.6 Sec

Evolution of Species

Four Kinds of Minds

- Tower of Generate-and-Test
 - By a process of evolution by natural selection
 - Important advances in cognitive power

Tower of Generate-and-Test

Daniel Clement Dennett (1942~)

- American philosopher
- Evolution biology and cognitive science
- Kinds of Minds: Toward an understand of consciousness
- Darwin's Dangerous Idea: Evolution and the meanings of life
- Intentional stance(beliefs and desires)

Darwinian Creature

- Darwinian evolution of species by natural selection
 - Generated by recombination and mutation of genes
 - Field-tested, and only the best designs survived

multiplication of the favored genotype

Tower of Generate-and-Test

Darwinian Creature

• Behavior-based Intelligence

Skinnerian Creature

- Property of phenotypic plasticity
- Simple sort of "experience"
 - Getting a positive or negative signal
 - Adjusted probability of that action

Burrhus Frederic Skinner (1904~1990)

American psychologist
 Operant conditioning (Obies)

Next time, the creature's first choice will be the reinforced response.

election

Lights

Skinnerian Creature

Operant conditioning, reinforcement

Popperian Creature

- Preselection and prediction
- "Permits our hypothesis to die in our stead"
 - The inner environment contains about the outer environment and its regularities
- Filtered Pattern

Sir Karl Raimund Popp er (1902~1994)

- Austrian and British philosophe
 r
- Critical rationalism
- Scientific method by advancing empirical falsification

Popperian Creature

• Pattern-based Prediction

Gregorian Creature

- Mind tools: words
- Benefiting from the experience of others with the mind tools(words)
- Sharable and reusable Knowledge

Richard Langton Gregory (1923~)

- British psychologist
- Emeritus professor of neuropsychol ogy at the university of Bristol
- Eye and Brain, Mind in Science
- the modern founder of the science o f perception

Gregorian Creature

• Imitation & Symbol-based Prediction

Gregorian Creature : Semantic Representation

- · Important resource for language processing
- \cdot Reducing the amount of data to be stored in memory
- \cdot Strongly invariant to scene variations
- · Logical inference using relations between concepts

• • •

Characteristics of Four Kinds of Mind (Intelligence)

Level	Darwinian Le vel	Skinnerian Le vel	Popperian Le vel	Gregorian Le vel
Perception	1 or 2 High performanc e Specialized Sensors very simple data, very low entropy	Some High performanc e Specialized Sensors simple data, low entropy	Unspecialized Sensors complex data, high entropy	Unspecialized Sensors very complex data, very high entropy
Prediction	Specialized sensor- based Simple Predi ction	Stimulus-Response learning-based Pred iction	Prediction by Patter n-based Simulation	Inference-based Pr ediction from many knowledge resource s
Model / Learni ng	Fixed & tightly coupled Sensory-motor Coordin ation / Natural selection	Plastic & loosely couple d Sensory-motor Coord ination / Reinforcement Learning	Pattern-based Hierarch ical Memory / Pattern C lassification or Clusteri ng	Symbolic Model / Pattern and Rule Lea rning

Subsumption of Four Kinds of Mind (Intelligence)

Fundamental Mind Functions

Can We Develop Mind Functions in the Brain of Gregorian Creature?

Three Fundamental Information Processes in Human Brain Red : feedback Green : feed-forward

Thalamocortical system Prediction is processed by **top-down** infor (Learning is processed by **feedback**) mation (1) Superficial (II-III) Middle (TV) Deep (\mathbf{v}) (V1)6 layers N Ret 6 layers Thal Matrix loop Core loop A 6 layers Sequential learning **Category learning** Language, grammar learning !

Granger R, Engines of the Brain: The computational instruction set of human cognition, AI Magazine (2006)

D. George amd J. Hawkins, Towards a mathematical theory of cortic al micro-circuits, PLoS Computational Biology, 2009.

What Is Key Property in Information Processes of Gregorian Brain

RBU(Risky But Useful) Process

Awareness Test

RESEARCHES ON FOUR MIND FUNCTIONS IN INCORL

Planning

- · Reactive planning
- · Improvisational planning
- · Proactive planning

Navigation

- \cdot Semantic SLAM and navigation
- · L-SLAM

Recognition

· Oriented edge-selective band-pass filtering

Manipulation

· Skill Learning

List of Contributors

- Post Doctor
 - Sang Hoon Lee
 - Recognition
 - Gi Hyun Lim
 - Planning
- PhD Student
 - Guoxuan Zhang, Jin Han Lee, Dong Wook Ko
 - Navigation
 - Woo Young Kwon, Sang Hyoung Lee
 - Manipulation
 - Young Bin Park, Gwang Geun Ryu, Deok Hyeon Cho, Se Hyung Lee
 - Recognition
 - Seung Woo Hong
 - Planning

PLANNING

Four Kinds of Planning

Future plan

- Integrated framework for Gregorian-level planning including

REACTIVE PLANNING

Reactive but not goal-oriented

Goal-oriented as well as Reactive

Put down a bone

An Example of Reactive Planning

[References]

I. H. Suh, S. Lee, W. Y. Kwon, and Y. -J. Cho, "Learning of Action Patterns and Reactive Behavior Plans via a Novel Two-Layered Eth ology-Based Action Selection Mechanism," 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1232-123 8, August 2-6, 2005, Edmonton, Canada **26**

Reactive Plan Scenario

• Task: Bite a bone and put down the bone in front of the ball (Here, the ball is a food storage space)

How the AIBO Reactively Can Use Embodied Plans?

When the AIBO loses the bone by human disturbance...

Video Clip: How the AIBO Reactively Can Use Embodied Plans? S₃ S_1 S_2 S_4 Start task Approach bone Search ball Bite bone V S_5 Approach ball Sne V Search bone Deprive bone S_7 S_6 Put down bone Terminate task ETHOLOGY-BASED ACTION SELECTION MECHANISM SCENARIO II

(X4, 00:00:45)

Reactive Planning anda Action Selection

PROACTIVE PLANNING

Proactive Assistant Robot Using Temporal Prediction of Future Events

- Two kinds of predictions
 - What: a kind of request (T-part or L-part)
 - When: the expected time of the predicted request

Separation of Uncertainty and the Time of the Same Event

Hybrid Bayesian Network Representation of Temporal Event

(a) An hybrid Bayesian network representation of a temporal event, **X**

$$P(X = x_i, t_1 < T_X < t_2)$$

= $P(X = x_i) \int_{t_1}^{t_2} f_{X_i}(t_X) dt_X$

(b) An hybrid Bayesian network representation of relationship, $X \rightarrow Y$

$$P(Y = y_i, t_1 \le T_Y \le t_2 \mid X = x_j, T_X = t_X)$$

=
$$P(Y = y_i \mid X = x_j) \int_{t_1}^{t_2} f_{Z_k}(t_Y - t_X) dt_Y$$

Temporal probability of an event = causal x temporal

Temporal Bayesian Network

[References]

Woo Young Kwon and Il Hong Suh. 2011. "Towards proactive assistant robots for human assembly tasks", In Proceedings of the 6th in ternational conference on Human-robot interaction. ACM, pp.175-176, New York, NY, USA, 2011.

Demonstration of A Manufacturing Assistant Robot

Proactive assistance

6x [00:42]

6x [01:05]
IMPROVISATIONAL PLANNING

Issues of Semantic Robot Intelligence

- Unified robot knowledge to integrate low-level data to high-level knowledge to interact with humans
- Robust knowledge instantiation and update with imperfect sensing data such as misidentification of object recognition
- Suggestion of alternative actions even with incomplete knowledge

Requirements for Robot Knowledge

- Robot has to perceive environments with features, model a world with object and space where it exists, plan and perform some sequence of actions and be aware of contexts
- Each data class includes from low level to high level. Those different level of data representation needs to be connected with each other

Robot-centered Ontology

[References]

Gi Hyun Lim, Il Hong Suh, Hyowon Suh, "Ontology-Based Unified Robot Knowledge for Service Robots in Indoor Environments", S ystems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on , vol.41, no.3, pp.492-509, May 2011

Example of Semantic Map

Applications of Semantic Map

Is it on the way to kitchen?

If A exists and A is linked to Target_node
 and A is recognized
 then Robot is on the right way to Target node.

Video Clip: Find Partially Occluded Object

Ontology-based Multi-layered Robot Knowledge Framework (OMRKF)

NAVIGATION

Four Kinds of Navigation

Navigation

Line SLAM (L-SLAM)

Semantic SLAM

L-SLAM

Line-based Monocular SLAM

- G. Zhang, I. H. Suh, "SoF-SLAM: Segments-on-Floor-based Monocular SLAM," in Proc. of The IEEE/RSJ International Conference on Intelligent Robots and Systems, Taiwan, 2010.
- G. Zhang, I. H. Suh, "Building a Partial 3D Line-based Map using a Monocular SLAM," in Proc. of The IEEE International Conference on Robotic s and Automation, Shanghai, China, 2011.

Sensor RBU Revision

• RBU: Risky But Useful

- : Detected Vertical Line
- : Generated Vertical Line

Demo Video Clip

Loop Closing Through The Vanishing Points in a Line-based Monocular SLAM

2011.03.02

Guoxuan Zhang, Dong Hun Kang and Il Hong Suh Hanyang University, Seoul, Korea

[00:01:09]

• G. Zhang, D. H. Kang, and I. H. Suh, "Loop Closure Through Vanishing Points in a Line-based Monocular SLAM," Accepted for The IEEE International Conference on Robotics and Automation, 2012.

Real-Time Demo [00:00:44]

Additional Experiments

With Human Disturbance [00:02:06]

Triangular Building
[00:01:09]

Without Perpendicular Floor Line [00:00:47]

SLAM in Crowd Indoor Environment (Hospital)

직선 기반 실내용 SLAM 시스템 개발

한양대학교 부속병원 주행 실험

2011.03.08

한양대학교 INCORL 연구실

Characteristics of Line-based Indoor SLAM System:

- Can effectively eliminate passers-by since lines are rarely extracted from human bodies.
- Robust for concurrently moving objects (passers-by)
- S. M. Hwang, G. Zhang and I. H. Suh, "Simultaneous Localization and Mapping using 3D Lines", 2012 IEEK(The Institute of Electronics Eng ineers of Korea) Autumn Conference, November 26, 2012, Daejeon, Korea.

Stereo Line-SLAM

Ongoing Work: Semantics SLAM

SEMANTIC SLAM AND NAVIGATION

Human Navigation Strategies

• View-dependent place recognition

Human Navigation (In cognitive psychology)

Path Integration

R. Wang and E. Spelke, "Human spatial representation: Insights from animals," Trends in Cognitive Sciences, 6(9), pp. 376-382, 2002.

Our Semantic SLAM

Topological + Semantic Map with high-cost and high-performance sensor

Topological + Semantic Map with low-cost and low-performance sensor

Bayesian Model for Semantic SLAM

- C. Yi, I. H. Suh, G. H. Lim, and B. U. Choi, Semantic Mapping and Active Localization for Service Robots, IEEE Transactions on Systems, Man, and Cybernetics, Part A, submitted.
- C. Yi, I. H. Suh, G. H. Lim, and B. U. Choi, Bayesian robot localization using spatial object contexts, Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, pp. 3467-3473, 2009.
- C. Yi, I. H. Suh, G. H. Lim, and B. U. Choi, Active-semantic localization with a single consumer-grade camera, Proceedings of the 2009 IEEE international conference on Systems, Man a nd Cybernetics, pp. 2161-2166, 2009.

Semantic Mapping and Localization with Open Dataset

- Automatic landmark detection using saliency (corner)
- Automatic node detection using Bayesian surprise

Experimental results of Open Dataset

Semantic Mapping and Locaization in Rawseeds dataset

Hanyang University

Bearing level

The Ray

Final mean error based on

10

Distance level

Comparison of results

• C. Yi, I. H. Suh, G. H. Lim, and B. U. Choi, Human Navigation-Inspired Semantic Map-building and Localization, Proceedings of the 2012 IEEE/RSJ international conference on Intellige nt robots and systems, submitted.

Semantic Mapping and Navigation in Real Environment (Corridors)

Semantic Mapping &Navigation

Semantic Mapping in Corridors

Hanyang University

Corridor environment

• D. W. Ko, C. Yi, I. H. Suh, and B. U. Choi, Semantic Mapping and Navigation with Visual Planar Landmarks, Proceedings of the 2012 IEEE/RSJ international conference on Intelligent ro bots and systems, submitted.

RECOGNITION

Four Kinds of Recognition

HIRS (Hierarchical, Interactive Recognition & Segmentation) framework

ORIENTED EDGE-SELECTIVE BAND-PASS FILTERING

Edge Detection vs. Edge Orientation Estimation

Original image

Edge detection (Canny edge detection)

Edge orientation estimation

Why Is Edge Orientation Estimation Important to Recognize Objects?

Rectangle detection

Edge Orientation Analysis : Filter-based Approach

Filter-based Approach : Problem

Original image

Ideal condition

Gabor filtering

Oriented Edge-Selective Band-Pass Filtering Based on RBU Theory

I²R filtering : Lateral Inhibition, Inhibitory Feedback, Recurrent Connection

[References]

1. Lateral and Feedback Schemes for the Inhibition of False-positive Responses in Edge Orientation Channels, (ICRA2012)

2. Oriented Edge-Selective Band-Pass Filtering, IEEE transactions on Image Processing, Submitted

Experimental Result

01:47

MANIPULATION

Four Kinds of Manipulation

Gregorian Manipulation

: Generation of New Sentences using Words

Sapient Manipulation by Imitation

- Little Consideration of Primitives

• Video Clip – Assistant Chef Robot (Making Rice)

• Video Clip – Assistant Chef Robot (Cutting Food Item)

Incremental Learning

Extracting the Training Data using Kinesthetic Teaching Method (*Cutting Food Item*) Four New Basis Skills

Conclusion (Future Works in INCORL)

• Service-Oriented dependable Situated Human Robot Interaction (SOS-HRI)

- Application scenario
 - Knowledgeable and Situation
 Adequate Kitchen Assistance Robot (Know-SAKAR)

