LCCC Symposium on Robotic Skill Learning and Cognition Lund, 17-19 April 2012

Challenges in adapting imitation and reinforcement learning to compliant robots

Sylvain Calinon

iit

Learning & Interaction Group Department of Advanced Robotics Italian Institute of Technology (IIT) www.programming-by-demonstration.org/learning-and-interaction/

Italian Institute of Technology (IIT)

- Created in 2003, headquarters in Genova
- Group of nine universities as satellite research units
- Over 400 researchers (37 different countries, 200 working in the area of robotics)

Advanced Robotics (Director: Darwin Caldwell)

Robotics, Brain and Cognitive Sciences (Director: Giulio Sandini)

Drug Discovery and Development (Director: Daniele Piomelli)

Neuroscience and Brain Technologies (Director: Fabio Benfenati)

Nanobiotechnology

(Nanochemistry, Nanofabrication, Nanophysics, Computer Imaging)

iCub built at IIT

Advanced Robotics Department (ADVR) @ IIT

- Over 70 researchers (from 25 PhD students to 5 Full Professors).
- Multidisciplinary approach to design and control, such as the development of SEA-based CoMan and hydraulic HyQ robots.

Advanced Robotics Department (ADVR) @ IIT

- Over 70 researchers (from 25 PhD students to 5 Full Professors).
- Multidisciplinary approach to design and control, such as the development of SEA-based CoMan and hydraulic HyQ robots.

- ADVR resources include a 7-DOFs Barrett WAM manipulator, a Barrett Hand, a 7-DOFs KUKA Lightweight Arm and a 6-cameras VICON motion tracking system.
- EU research projects: RobotCub, Viactors, Octopus, Hands.DVI, Amarsi, Saphari (2012), Stiff-Flop (2012) and Pandora (2012).
- Learning and Interaction Group at ADVR created in 2009. (4 postdocs (2012), 5 PhD students)

Compliant control for safe HRI $M(q)\ddot{q} + C(\dot{q},q)\dot{q} + g(q) = oldsymbol{ au}_G + oldsymbol{ au}_T + oldsymbol{ au}_O$

Gravity compensation

$$\boldsymbol{\tau}_{G} = \sum_{i=1}^{L} \mathbf{J}_{G,i}^{\mathsf{T}}(\boldsymbol{q}) \boldsymbol{F}_{G,i}$$

Task execution $oldsymbol{ au}_T = \mathbf{J}_T^{ op}(oldsymbol{q}) oldsymbol{F}_T$

User avoidance $oldsymbol{ au}_O = \mathbf{J}_O^{ op}(oldsymbol{q}) oldsymbol{F}_O$

Flexible representation of skills through a superposition of basis flow fields

Some examples:

- Gaussian Mixture Regression (GMR) [Calinon *et al*, IEEE RAM 17(2), 2010]
- Stable Estimator of Dynamical Systems (SEDS) [Khansari and Billard, IROS'10]
- Dynamic Movement Primitives (DMP) [Ijspeert et al, IROS'01][Hoffmann et al, ICRA'09]
- Correlated Dynamic Movement Primitives
 [Calinon, Sardellitti and Caldwell, IROS'10]
 Takagi-Sugeno (TS) fuzzy model

[Takagi and Sugeno, IEEE Trans. SMC 15(1), 1985]

Dynamic Movement Primitives (DMP)

Core idea:

$$\tau \ddot{x} = \kappa^{\mathcal{P}} [x_T - x] - \kappa^{\mathcal{V}} \dot{x} + f(t), \quad f(t) = \sum_{i=1}^{K} h_i(t) f_i$$
Original formulation:

$$\tau \ddot{x} = \kappa^{\mathcal{P}} [x_T - x] - \kappa^{\mathcal{V}} \dot{x} + f(s), \quad f(s) = s [x_T - x_0] \sum_{i=1}^{K} h_i(s) f_i$$

$$\tau \dot{s} = -\alpha s$$

[A.J. Ijspeert, J. Nakanishi and S. Schaal, IROS'2001]

Variant of DMP based on mechanical springs analogy:

[H. Hoffmann, P. Pastor, D.H. Park and S. Schaal, ICRA'2009] [S. Calinon, F. D'halluin, D.G. Caldwell and A. Billard, Humanoids'2009]

Gaussian Mixture Regression (GMR)

$$\ddot{\boldsymbol{x}} = \kappa^{\mathcal{P}}(\boldsymbol{\hat{\mu}}^{\boldsymbol{x}} - \boldsymbol{x}) - \kappa^{\mathcal{V}} \dot{\boldsymbol{x}}$$

Learning adaptive stiffness by extracting variability and correlation information

Learning adaptive stiffness by extracting variability and correlation information

Learning adaptive stiffness by extracting variability and correlation information

Some examples:

Based on Parametric Hidden Markov Model (PHMM):

[Wilson and Bobick, IEEE Trans. on Pattern Analysis and Machine Intelligence 21(9), 1999] [Krueger, Herzog, Baby, Ude and Kragic, IEEE Robotics & Automation Magazine 17(2), 2010]

• Based on Gaussian Mixture Regression (GMR):

[Muehlig, Gienger, Hellbach, Steil and Goerick, ICRA'2009] [Cederborg, Ming, Baranes and Oudeyer, IROS'2010]

• Based on **Dynamic Movement Primitives (DMP)**:

[Kober, Mohler and Peters, IROS'2008] [Ude, Gams, Asfour and Morimoto, IEEE Trans. on Robotics 26(5), 2010] [Matsubara, Hyon and Morimoto, Neural Networks 24(5), 2011]

Reproductions in new situations

Stiffness ellipsoids at different time steps in the movement

Extension to collaborative manipulation skills

Each assembly task is characterized by different sequences, positions and orientations of components, with haptic and movement patterns specific to the item to assemble.

[Collaboration between IIT and IRI, UPC, Barcelona, Spain]

Extension to collaborative manipulation skills

5

[Collaboration between IIT and IRI, UPC, Barcelona, Spain]

Pancake with 4 markers (more robust to occlusions)

[Petar Kormushev, Sylvain Calinon and Darwin Caldwell, IROS'2010]

[Petar Kormushev, Sylvain Calinon and Darwin Caldwell, IROS'2010]

[Petar Kormushev, Sylvain Calinon and Darwin Caldwell, IROS'2010]

Episodic reward of policy $\boldsymbol{\Theta}_k$:

$$r(\boldsymbol{\Theta}_k) = \alpha_1 \frac{\arccos(\boldsymbol{V}_0 \boldsymbol{V}^{\top})}{\pi} + \alpha_2 \exp(-|\boldsymbol{X} - \boldsymbol{x}|) + \alpha_3 \boldsymbol{X}_3^{\max}$$

Episodic reward of policy Θ_k :

$$r(\boldsymbol{\Theta}_k) = \alpha_1 \frac{\arccos(\boldsymbol{V}_0 \boldsymbol{V}^{\scriptscriptstyle \top})}{\pi} + \alpha_2 \exp(-|\boldsymbol{X} - \boldsymbol{x}|) + \alpha_3 \boldsymbol{X}_3^{\max}$$

EM-based RL algorithm:

PoWER (Policy learning by Weighting Exploration with the Returns)

For an ordered set of policies $\{\Theta_k\}_{k=1}^K$, with $r(\Theta_1) \ge r(\Theta_2) \ge \ldots$, the update rule at each iteration *n* is defined as:

$$\boldsymbol{\Theta}^{(n)} = \boldsymbol{\Theta}^{(n-1)} + \frac{\sum_{k}^{K} r(\boldsymbol{\Theta}_{k}) \left[\boldsymbol{\Theta}_{k} - \boldsymbol{\Theta}^{(n-1)}\right]}{\sum_{k}^{K} r(\boldsymbol{\Theta}_{k})}$$

[J. Kober and J. Peters, IEEE RAM 17(2), 2010]

RL with adaptive resolution in the policy

Dynamical systems encoding with fixed resolution:

Dynamical systems encoding with adaptive resolution:

RL with adaptive resolution in the policy

Conventional ZMP-based dynamic walking

[P. Kormushev, B. Ugurlu, S. Calinon, N.G. Tsagarakis and D.G. Caldwell, IROS'2011]

RL with adaptive resolution in the policy

[P. Kormushev, B. Ugurlu, S. Calinon, N.G. Tsagarakis and D.G. Caldwell, IROS'2011]

Multidimensional rewards in EM-based RL

PoWER: [Kober and Peters, RAM 17(2), 2010]

$$r(\Theta_k) = \alpha_1 r_1(\Theta_k) + \alpha_2 r_2(\Theta_k) + \alpha_3 r_3(\Theta_k)$$

$$\Theta^{(n)} = \Theta^{(n-1)} + \frac{\sum_{k}^{K} r(\Theta_k) \left[\Theta_k - \Theta^{(n-1)}\right]}{\sum_{k}^{K} r(\Theta_k)}$$

$$\boldsymbol{r}(\boldsymbol{\Theta}_k) = \begin{bmatrix} r_1(\boldsymbol{\Theta}_k) \\ r_2(\boldsymbol{\Theta}_k) \\ r_3(\boldsymbol{\Theta}_k) \end{bmatrix}$$

In some tasks, the desired outcome (maximum reward) is known, which can be exploited in the RL process: $f(\cdot) = \frac{1}{8^{r_3}}$

3D parameter space

[P. Kormushev, S. Calinon, R. Saegusa and G. Metta, Humanoids'2010]

ARCHER (Augmented Reward CHainEd Regression)

$$\boldsymbol{r}(\boldsymbol{\Theta}_k) = \begin{bmatrix} r_1(\boldsymbol{\Theta}_k) \\ r_2(\boldsymbol{\Theta}_k) \\ r_3(\boldsymbol{\Theta}_k) \end{bmatrix}$$

[P. Kormushev, S. Calinon, R. Saegusa and G. Metta, Humanoids'2010]

Consideration of time and space constraints in the weighting mechanism

scalar weight linear subsystem

 $\dot{x} = \sum h_i(x) (A_ix + b_i)$

+

Consideration of time and space constraints in the weighting mechanism

scalar weight linear subsystem

 $\dot{x} = \sum \tilde{h_i(t)} (A_i x + b_i)$

Which weighting mechanism to use?

Task-dependent recovery strategies after perturbation:

[Sylvain Calinon, Antonio Pistillo and Darwin Caldwell, IROS'2011]

Which weighting mechanism to use?

Gaussian Mixture Model (GMM)

$$\alpha_i^{\text{GMM}} = \mathcal{N}(oldsymbol{x}; \ oldsymbol{\mu}_i^{\mathcal{X}}, oldsymbol{\Sigma}_i^{\mathcal{X}})$$

Time-based weighting mechanism $\alpha_i^{\text{time}} = \mathcal{N}(t; \ \mu_i^{\mathcal{T}}, \Sigma_i^{\mathcal{T}})$

Hidden Markov Model (HMM) $\alpha_{i,n}^{\text{\tiny HMM}} = \Big(\sum_{j=1}^{K} \alpha_{j,n-1}^{\text{\tiny HMM}} \ a_{j,i}\Big) \mathcal{N}(\boldsymbol{x}_{n}; \ \boldsymbol{\mu}_{i}^{\mathcal{X}}, \boldsymbol{\Sigma}_{i}^{\mathcal{X}})$

Generic weighting mechanism based on Hidden Semi-Markov Model (HSMM)

[Sylvain Calinon, Antonio Pistillo and Darwin Caldwell, IROS'2011]

Generic weighting mechanism based on Hidden Semi-Markov Model (HSMM)

[Sylvain Calinon, Antonio Pistillo and Darwin Caldwell, IROS'2011]

Active visualization and assessment of skills

[De Tommaso, Calinon and Caldwell, Intl Journal of Social Robotics (in press)]

Conclusion

The development of new actuators and control architectures is bringing a new focus on passive and active compliance, energy optimization, human-robot collaboration and safety.

Existing machine learning tools need to be re-thought and adapted to these new developments, with systems that can:

- simultaneously learn motion and impedance behaviors.
- exploit the **statistical information** contained in multiple demonstrations of the same task.
- be modulated with respect to task input parameters.
- be used in **imitation and reinforcement learning** settings.
- reproduce natural movements and reactive behaviors in a smooth and continuous way.

Programming-by-demonstration.org

• be analyzed and visualized during the training process.