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Italian Institute of Technology (IIT) 

• Created in 2003, headquarters in Genova 

• Group of nine universities as satellite research units 

• Over 400 researchers (37 different countries, 
200 working in the area of robotics) 
  
Advanced Robotics  
(Director: Darwin Caldwell) 

 Robotics, Brain and Cognitive Sciences  
(Director: Giulio Sandini)   

 Drug Discovery and Development  
(Director: Daniele Piomelli) 

 Neuroscience and Brain Technologies  
(Director: Fabio Benfenati) 

 Nanobiotechnology  
(Nanochemistry, Nanofabrication, Nanophysics, Computer Imaging) 

 

iCub built at IIT 



Advanced Robotics Department (ADVR) @ IIT 

• Over 70 researchers (from 25 PhD students to 5 Full Professors). 

• Multidisciplinary approach to design and control, such as the 
development of SEA-based CoMan and hydraulic HyQ robots. 
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• ADVR resources include a 7-DOFs Barrett WAM manipulator, a 
Barrett Hand, a 7-DOFs KUKA Lightweight Arm and a 6-cameras 
VICON motion tracking system. 

• EU research projects: RobotCub, Viactors, Octopus, Hands.DVI, 
Amarsi, Saphari (2012), Stiff-Flop (2012) and Pandora (2012). 

• Learning and Interaction Group at ADVR created in 2009. 
(4 postdocs (2012), 5 PhD students) 



Learning and Interaction Group @ ADVR-IIT 

Antonio Pistillo 
Tohid Alizadeh Leonel Rozo  

Petar Kormushev  

Davide De  
Tommaso 

Contact email: sylvain.calinon@iit.it 



Compliant control for safe HRI 
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Some examples: 
 

• Gaussian Mixture Regression (GMR) 
[Calinon et al, IEEE RAM 17(2), 2010] 

• Stable Estimator of Dynamical Systems (SEDS) 
[Khansari and Billard, IROS’10] 

• Dynamic Movement Primitives (DMP) 
[Ijspeert et al, IROS’01][Hoffmann et al, ICRA’09] 

• Correlated Dynamic Movement Primitives 
[Calinon, Sardellitti and Caldwell, IROS’10] 

• Takagi-Sugeno (TS) fuzzy model  
[Takagi and Sugeno, IEEE Trans. SMC 15(1), 1985] 

Flexible representation of skills through a 
superposition of basis flow fields 



Dynamic Movement Primitives (DMP) 

Core idea: 
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Extension of Dynamic Movement Primitives 



     encoded in GMM,                     retrieved through GMR 

Gaussian Mixture Regression (GMR) 



DMP with WLS learning scheme DMP with GMR learning scheme 

Extension of Dynamic Movement Primitives 
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Extension of Dynamic Movement Primitives 
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Multiple 
demonstrations 

 

Compact model of  
the variations and  

correlations 
 

Reproduction with  
variable stiffness 

 

Tasks 
 

Invariant demonstrations  
 

High gains to track the desired position  

Learning adaptive stiffness by extracting 
variability and correlation information 



Learning adaptive stiffness by extracting 
variability and correlation information 



Learning adaptive stiffness by extracting 
variability and correlation information 



Some examples: 
 

• Based on Parametric Hidden Markov Model (PHMM): 
[Wilson and Bobick, IEEE Trans. on Pattern Analysis and Machine Intelligence 21(9), 1999] 

[Krueger, Herzog, Baby, Ude and Kragic, IEEE Robotics & Automation Magazine 17(2), 2010] 
 

• Based on Gaussian Mixture Regression (GMR): 
[Muehlig, Gienger, Hellbach, Steil and Goerick, ICRA’2009] 

[Cederborg, Ming, Baranes and Oudeyer, IROS’2010] 
 

• Based on Dynamic Movement Primitives (DMP): 
[Kober, Mohler and Peters, IROS’2008] 

[Ude, Gams, Asfour and Morimoto, IEEE Trans. on Robotics 26(5), 2010] 
[Matsubara, Hyon and Morimoto, Neural Networks 24(5), 2011] 

Task-parameterized dynamical systems 



Task-parameterized dynamical systems 

Demonstrations Observation in frame A Observation in frame B 



Task-parameterized dynamical systems 



Task-parameterized dynamical systems 

Reproductions in new situations 

Stiffness ellipsoids at different time steps in the movement 

Stochastic reproduction trials 



Extension to collaborative manipulation skills 

Each assembly task is characterized by different sequences, positions and 

orientations of components, with haptic and movement patterns specific to 

the item to assemble. 



Multiple demonstrations 

Reproduction in new situation 
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Extension to collaborative manipulation skills 



EM-based Reinforcement Learning 
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EM-based Reinforcement Learning 

Episodic reward of policy        : £k

V

xX

Xmax



EM-based Reinforcement Learning 

EM-based RL algorithm:  

PoWER (Policy learning by Weighting Exploration with the Returns) 
 

For an ordered set of policies                   , with                                         , 

the update rule at each iteration n is defined as: 
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RL with adaptive resolution in the policy 

Dynamical systems encoding with adaptive resolution: 

Dynamical systems encoding with fixed resolution: 



RL with adaptive resolution in the policy 

Fixed CoM height Variable CoM height 

Conventional ZMP-based dynamic walking 
Passive 

Compliance 

COMAN humanoid 
robot developed 
at ADVR-IIT 



With fixed CoM height With adaptive CoM height 

current 
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RL with adaptive resolution in the policy 



In some tasks, the desired outcome (maximum 
reward) is known, which can be exploited in the 
RL process:  

PoWER: 

Multidimensional rewards in EM-based RL 



ARCHER (Augmented Reward CHainEd Regression) 



Consideration of time and space constraints 
in the weighting mechanism 
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Task-dependent recovery strategies after perturbation: 

Which weighting mechanism to use? 



Hidden Semi-Markov Model (HSMM) 

Gaussian Mixture Model (GMM) 

Time-based weighting mechanism 
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Generic weighting mechanism based on 
Hidden Semi-Markov Model (HSMM) 

Perturbation from the user holding the robot  



Generic weighting mechanism based on 
Hidden Semi-Markov Model (HSMM) 



Active visualization and assessment of skills 



The development of new actuators and control architectures is 
bringing a new focus on passive and active compliance, energy 
optimization, human-robot collaboration and safety. 
 

Existing machine learning tools need to be re-thought and 
adapted to these new developments, with systems that can: 
 

• simultaneously learn motion and impedance behaviors. 
• exploit the statistical information contained in multiple 

demonstrations of the same task. 
• be modulated with respect to task input parameters. 
• be used in imitation and reinforcement learning settings. 
• reproduce natural movements and reactive behaviors in a 

smooth and continuous way. 
• be analyzed and visualized during the training process. 

Conclusion 


