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Resilient infrastructure networks

» good in business as usual, prone to disruptions

» cascade effects

= network vulnerability >>

Typical Monday at 18:30

g component vulnerabilities

Monday, July 11, 2011, at 18:30




Static flow networks
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capacities Co > 0

&S = {out-links of v}
&, = {in-links of v}

» equilibrium flow: f = {f.} such that 0 < f, < C, and
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Max-flow min-cut theorem

3 equilibrium flow f: )~ =)o —




Max-flow min-cut theorem
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min-cut capacity: C .= min C
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3 equilibrium flow f : Z fe=Xo — C—)20>0

> static, centralized, global information




Dynamical flow networks
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Dynamical flow networks
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(cf. with %p =—-V,-f)




Flow function
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Distributed routing
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G_. = fraction of A, routed to e
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Locally responsive distributed policies

G" Ry - P(ES)
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Locally responsive distributed policies

GY: Rij — P(EN)
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Locally responsive distributed policies

GY:RY = P(E)
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(i) pe o0 = GUp") =0

» (i) = network is monotone (i.e., Jacobian is Metzler) = ...

= ...|| ||]1 contraction = tim Ap(t) independent of p(0)
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Dynamical flow networks
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Perturbed dynamical flow networks
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Margin of resilience
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perturbed network: Eﬁe = MNGY(p)—fie(pe) e€&f,v#D

~ := inf magnitude of disruption s.t. lim Ap(t) < Ao
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Optimal resilience

residual node capacity

for limit flow f*

R(f*) := min C—f7
v#D
ec&S
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Optimal resilience
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Theorem: acyclic network, limit flow *

1. distributed routing
7 < R(f7)

2. locally responsive routing = f* globally attractive

7= R(f")




Optimal resilience (cont'd)

R * = H ¥
(f%) min > Ce—fe
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R(f*)o can be arbitrarily large

local information constraint — resilience loss




Optimal resilience (cont'd)

R(f*) == C'JQB Y C—f
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» perturbations and distributed routing effect only downstream

» locally responsive policies
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locally optimal load rebalance




Bounded density capacities

0 < P < 400
pe(0) =0 pe(pe) = Ce

te(pe) >0 Vpe € (0, pF'*)

Ne(pe) =0 Vpe > Ce




Bounded density capacities
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e=(vw) = sope= W(OMG() — vu(Delpe)

xu(t) :=1— Heesj(l —&e(1)) Ee(t) == l[o,pgﬁx)(/)e)




Cascade propagation mechanism

Perturbation localized on &7, such that ng Ce < AL,




Cascade propagation mechanism
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Node w overloaded = every e € &,/ drops




Cascade propagation mechanism
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Hence w drops together with all e € &,




Cascade propagation mechanism
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Possibly other nodes downstream become overloaded...




Cascade propagation mechanism

...and eventually drop




Cascade propagation mechanism
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Either a new equilibrium flow is eventually achieved




Cascade propagation mechanism

...0r not.




Cascade propagation mechanism

If the perturbation overloads the origin...




Cascade propagation mechanism

. no more flow passes through the network.




Dynamical flow networks with bounded density
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Theorem: p"®* < 400 Ve — tlim Ap(t) € {0, o}
—00
1 acyclic network, any distributed routing
v < T(f7) r(f*):=... backward induction

2 locally responsive routing, d <2 = ~=TI(f")

3 locally responsive routing = v > R(f")




Dynamical flow networks with bounded density




Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density

o
4 @
1.5 ®
—
4 ®
4
@
4 o




Slowing down local flow

can reduce flow through v

Jje&, >

G . RV pjyued)
Gf(pj,p") := fraction of flow kept on j

1-— Gf(pj,p") := fraction of flow allowed through v




Slowing down achieves capacity

—</z\_
7

Theorem: Acyclic network, locally responsive policy
¥=C-2Xo

both with finite and infinite pT'®*
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Dynamical flow networks with bounded density




Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density




Dynamical flow networks with bounded density




Dynamical flow networks with bounded density




Conclusion

Summary
» robust distributed routing for dynamical flow networks
» margins of resilience

» role of cascades

Current/future directions
> cycles

» multicommodity flows
» value of communication

> resilience of networks with other dynamics




