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Resilient infrastructure networks

I good in business as usual, prone to disruptions

I cascade e↵ects

=) network vulnerability >>
X

component vulnerabilities

Disturbances in Urban Transportation Systems

 Accidents, road closures, inclement weather, etc.

 Load balancing related to adaptive road choice behavior of drivers

 Cascade effects can magnify the effect of disturbance
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Static flow networks

e wO
v D

λD

λO

di-graph (V, E)

origin O

destination D

capacities Ce > 0

E+
v = {out-links of v}

E−
v = {in-links of v}

! equilibrium flow: f = {fe} such that 0 ≤ fe < Ce and

∑

e∈E−

v

fe =
∑

e∈E+
v

fe ∀v #= O,D



Max-flow min-cut theorem

O
D

∂ U
U V\U

min-cut capacity: C := min
O-D cut U

∑

e∈U+

Ce

∃ equilibrium flow f :
∑

e∈E+
O

fe = λO ⇐⇒ C − λO > 0



Max-flow min-cut theorem
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∂ U
U V\U

min-cut capacity: C := min
O-D cut U

∑

e∈U+
Ce

∃ equilibrium flow f :
∑

e∈E+
O

fe = λO ⇐⇒ C − λO > 0

! static, centralized, global information



Dynamical flow networks

e wO
v D

λD

λO

d

dt
ρe

↑
density
on v

= λv

↑
flow

through
v

G v
e −

↑
fraction
routed
to e

fe

↑
outflow
of e



Dynamical flow networks

e wO
v D

λD

λO

d

dt
ρe = λv G v

e − fe

(cf. with
∂

∂t
ρ = −∇x · f )



Flow function

µe(ρe)

Ce

0 ρe

∀e ∈ E

fe = µe(ρe)

µe(0) = 0 sup
ρe≥0

µe(ρe) = Ce

d

dρe
µe > 0



Distributed routing

v
v e

E+
v

λ

λv =
∑

e∈E−

v

fe total flow through v

G v
e = fraction of λv routed to e

local information: ρv =
{

ρe : e ∈ E+
v

}

G v :

↗
distributed
routing
policy

R
E+
v

+

↑
local
info
space

−→ P(E+
v )

↑
probability
simplex
on E+

v



Locally responsive distributed policies
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E+
v

λ

G v : RE+
v
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v )

(i)
∂

∂ρj
G v
e ≥ 0 ∀e #= j ∈ E+

v

(ii) ρe → ∞ ⇒ G v
e (ρ

v ) → 0



Locally responsive distributed policies
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v

λ

G v : RE+
v

+ → P(E+
v )

(i)
∂

∂ρj
G v
e ≥ 0 ∀e #= j ∈ E+

v

(ii) ρe → ∞ ⇒ G v
e (ρ

v ) → 0

Ex.: i-logit

G v
e (ρ

v ) ∝ αe exp(−βρe) β > 0, α ∈ R
E+
v

+



Locally responsive distributed policies

v
v e

E+
v

λ

G v : RE+
v

+ → P(E+
v )

(i)
∂

∂ρj
G v
e ≥ 0 ∀e #= j ∈ E+

v

(ii) ρe → ∞ ⇒ G v
e (ρ

v ) → 0

! (i) ⇒ network is monotone (i.e., Jacobian is Metzler) ⇒ . . .

⇒ . . . || ||1 contraction ⇒ lim
t→∞

λD(t) independent of ρ(0)



Dynamical flow networks

e wO
v D

λD

λO

d

dt
ρe = λvG

v
e (ρ

v )− µe(ρe) e ∈ E+
v , v ∈ V \ {D}

transferring if lim
t→∞

λD(t) = λO



Perturbed dynamical flow networks

µe(ρe)

Ce

0 ρe

Ce
^

µe(ρe)

^

Perturbation : ∀e ∈ E

µe(ρe)

↓

µ̃e(ρe) ≤ µe(ρe)

Magnitude δ :=
∑

e
δe =

∑

e
||µe( · )− µ̃e( · )||∞



Margin of resilience

e wO
v D

λD

λO

µe(ρe)

Ce

0 ρe

Ce
^

µe(ρe)

^

perturbed network:
d

dt
ρ̃e = λ̃vG

v
e (ρ̃

v )−µ̃e(ρ̃e) e ∈ E+
v , v #= D

γ := inf magnitude of disruption s.t. lim
t→+∞

λ̃D(t) < λO



Optimal resilience

O
Dv

residual node capacity

for limit flow f ∗

R(f ∗) := min
v '=D

∑

e∈E+
v

Ce − f ∗e



Optimal resilience

O
Dv

R(f ∗) := min
v '=D

∑

e∈E+
v

Ce − f ∗e

Theorem: acyclic network, limit flow f ∗

1. distributed routing
γ ≤ R(f ∗)

2. locally responsive routing ⇒ f ∗ globally attractive

γ = R(f ∗)



Optimal resilience (cont’d)

O
Dv

R(f ∗) := min
v '=D

∑

e∈E+
v

Ce − f ∗e

! 1 ≤
C − λO

R(f ∗)
can be arbitrarily large

local information constraint =⇒ resilience loss



Optimal resilience (cont’d)

O
Dv

R(f ∗) := min
v '=D

∑

e∈E+
v

Ce − f ∗e

v
v e

E+
v

λ

! perturbations and distributed routing effect only downstream

! locally responsive policies
⇓

locally optimal load rebalance



Bounded density capacities
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Bounded density capacities

e wO
v D

λD

λO
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ρe
max ρe

e = (v ,w) ⇒
d

dt
ρe = χv (t)λvG

v
e (ρ

v )− χw (t)µe(ρe)

χv (t) := 1−
∏

e∈E+
v

(1− ξe(t)) ξe(t) := [0,ρmax
e )(ρe)



Cascade propagation mechanism

w
v

eO
D

λD

λO

Perturbation localized on E+
w , such that

∑

E+
w
C̃e < λ∗

w



Cascade propagation mechanism

w
v

eO
D

λD

λO

Node w overloaded ⇒ every e ∈ E+
w drops



Cascade propagation mechanism

v
eO

D
λD

λO
w

Hence w drops together with all e ∈ E−
w



Cascade propagation mechanism

v
eO

D
λD

λO
w

Possibly other nodes downstream become overloaded...



Cascade propagation mechanism

v
eO

D
λD

λO
w

...and eventually drop



Cascade propagation mechanism

eO
D

λD

λO
w

v

Either a new equilibrium flow is eventually achieved



Cascade propagation mechanism

eO
D

λD

λO
w

v

...or not.



Cascade propagation mechanism

e
D

λDw
v

λO
O

If the perturbation overloads the origin...



Cascade propagation mechanism

e
D

λDw
v

O
λO

... no more flow passes through the network.



Dynamical flow networks with bounded density

w
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Theorem: ρmax
e < +∞ ∀e =⇒ lim

t→∞
λD(t) ∈ {0,λO}

1 acyclic network, any distributed routing

γ ≤ Γ(f ∗) Γ(f ∗) := . . . backward induction

2 locally responsive routing, d+
v ≤ 2 =⇒ γ = Γ(f ∗)

3 locally responsive routing =⇒ γ ≥ R(f ∗)



Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Slowing down local flow

ev

E+
v

j

can reduce flow through v

j ∈ E−
v

G j : R
{j}∪E+

v
+ −→ P({j} ∪ E+

v )

G j
j (ρj , ρ

v ) := fraction of flow kept on j

1− G j
j (ρj , ρ

v ) := fraction of flow allowed through v



Slowing down achieves capacity

e wO
v D

λD

λO

Theorem: Acyclic network, locally responsive policy

γ = C − λO

both with finite and infinite ρmax
e



Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Dynamical flow networks with bounded density
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Conclusion

Summary

! robust distributed routing for dynamical flow networks

! margins of resilience

! role of cascades

Current/future directions

! cycles

! multicommodity flows

! value of communication

! resilience of networks with other dynamics


