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Information theory began with channel capacity.
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Michelle Effros, LCCC 2012
Thursday, October 18, 2012



Thursday, October 18, 2012

Today’s focus is largely on network capacities.
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Deriving network capacities is challenging.
Partial solutions are available for ALL of these networks.
Complete solutions are not available for ANY of these networks.
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Unfortunately, capacities do not compose.

—>| p(y2, ys|z1)

p(y4 \332, 5133)

EXAMPLE:

The capacity of the diamond network can be MUCH larger

than the maximal sum-rate through each channel.

max R4 >> max(Ri_2 + R1_3 + R1_>{2,3}),
max Ri1_,4 >> max(R2_>3 + R3_>4)
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The gap between theory and practice is widening.
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Reduction is a great tool for solving hard problems.

Given: Problems A & B

+
]

solution for A a bit of machinery solution for B

If the “machinery” is simple,
then B can’t be much harder than A.
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AVOIDING
Reduction is a great tool for s%ng/\hard problems.

Given: Problems A & B

solution for A a bit of machinery solution for B

The relationship follows even if no solution for A is known.

It is enough to build the “machinery.”
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The same strategy applies in information theory.

Given: Networks A & B

+
]

code for A a bit of machinery code for B

If the machinery (asymptotically) guarantees the same
performance (error probability & rate),
then any rate achievable on A is achievable on B.
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The same strategy applies in information theory.

Given: Networks A & B

+
]

code for A a bit of machinery code for B

The relationship holds even if the code for A is absent.

All we need is the “machinery.”
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The same strategy applies in information theory.

Given: Networks A & B

code for A a bit of machinery code for B

Proving Capacity(A) is a subset of Capacity(B)
requires no codes and no knowledge of either capacity.
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The same strategy applies in information theory.

Given: Networks A & B

There Ls great power tn good machinery!

code for A a bit of machinery code for B

Proving Capacity(A) is a subset of Capacity(B)
requires no codes and no knowledge of either capacity.
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This strategy is not new.

Given: A& B

. +

For example...

CS Theory [Hartmanis & Stearns, 1965]
Info Theory [Slepian & Wolf, 1973]
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Outline

Definitions
How does delay affect network capacity!?
Is there a path to a scalable information theory!?

Can we move beyond capacity to controls?
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Consider a memoryless m-node network.
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Network capacity:
Capacity(N) = {(RD),..., R(™)): 3 seq of codes with P 0}
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w2 W (P(2))
m-node memoryless network,
independent message originating at node ¢
{1,...,m} = messages required at node i
For a blocklength-n code,

{1,...,2nE")

network (input,output) of node i at time t € {1,...,n}
X t(?’) (W), Yl(:?_l) Ecausality constraint)

(WO -+ j € D(i)) = WP (WO, )

reconstruction at node ¢ after n time steps

Pr(UiE{l,...,m}{W(D(i)) # (WU jeD(i)})
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How does delay impact capacity?
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Some literature:

Gaussian channels with delayed feedback [Yanagi, 1995]
Relay channel with delay [van der Muelen & Vanroose, 2007]
Relay networks with delay [El Gamal, Hassanpour, Mammen 2007]
Cut-set bounds for generalized networks with positive delay [Fong & Yeung 2012]
On network coding for acyclic networks with delays [Prasad & Rajan 2012]
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Theorem [Effros, 2012]:
Delay has no impact on network capacity.

Given any pair of memoryless networks

(m)
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differing only in a finite collection of delays
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Capacity(N) = Capacity(Np)
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Proof: Capacity(N) D Capacity(Np) :
A code for Np...

W2 W)
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1 2 2 1 2
2 (fé)(W(l))(l) Xé(z))(W(Z)’Y%(z)))%Y{g Y2E2;
3 Xy Wy ) | Xy (Y(z),lez)\‘Yz Y
X | RO, v R | v
WERWm v ) whw®, v
Rate: (R, R(2))

Error Prob: Pe(n)
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Proof: Capacity(N) D Capacity(Np) :
can run on N without any performance loss.
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Proof: Capacity(N) C Capacity(Np) :
A code designed for no delay...
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Proof: Capacity(N) C Capacity(Np) :
..can be run with delay, but the cost seems to be high.




Proof: Capacity(N) C Capacity(Np) :
Better machinery reduces the cost.
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Proof: Capacity(N) C Capacity(Np) :
Better machinery reduces the cost to zero.
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Is there a path to a scalable information theory!?
[Koetter, Effros, Medard, 2009]

Derive bounding models that compose.

(Cr,Cy) are (lower, upper) bounding models for C
(written Cr CCC CU) iff
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Our models are made of lossless links.

p(y1,y2|x)

p(y|z1, x2)fPe g R

p(y7 yR‘ZCa :BR)

p(y1,y2|x1, x2)

[Koetter, Effros, & Medard 2009][Wong & Effros 2012]
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We can bound the network capacity
by bounding the network coding capacity.

Internet topology
[Lun Li, Caltech Ph.D.2007]

There exist computational tools

for bounding network coding capacities.
(e.g., [Yeung, 1997][Subramanian et al., 2008])
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Example: A noisy channels is bounded (above and below)
by a Iossless link of the same capacity.

yetly®
2 (isg.1) _ (i1). v GiD)
- cCY7rY = max I[(X'YV; YV

p(a(-1)

Capacity(N') = Capacity (N')
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Proof: Capacity(N) 2 Capacity(N’) :

A channel code makes the noisy channel act like a link.
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Proof: Capacity(N) C Capacity(N") :
A source code makes the link act like a noisy channel.
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Can we move beyond capacity to controls?

C {controls objectives individually achievable across N}
Controls(N) = {c* € C*: (cy,...,c) simultaneously achievable across N}

(Cr,Cy) are (lower, upper) bounding models for C
(written Cr CCC CU) iff

1 1
(m) (m) (m)
w X“’I CL i m> w w X( ym W w® X<1l| CU by m) oW
1 m 1 m
vy TN Iy () YUy 0y (m)
W) IIp(y“’Z),..,y(m’z)ll‘(l’z),..,m( IX sy D (12 (m2))y X WD) T (@) . (y12), .,y M2 |z (1D g (m2)y IX ()

' . T T T T T l -------- .

XA v ye) XTIy ® -

2 2 2
w® @) W ) w® @)

Controls(N7,) € Controls(N) C Controls(Ny)

Michelle Effros, LCCC 2012
Thursday, October 18, 2012



Can we move beyond capacity to controls?
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Design for the lower bounding network.
If the lower bound cannot meet the desired objectives,
test for achievability on the upper bounding model.
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How should we measure communications performance
for controls?

Given: Networks A & B

-4

controls solution
across network B

controls solution

across network A 2 bit of machinery

What must the machinery promise!?
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The literature suggests many performance measures.

Quantization noise [Elia & Mitter 2001, Xiao, et al. 2005]
Delay constraints [Berry & Gallager 2002]

Packet arrival probabilities [Sinopoli et al. 2005, Imer et al. 2006]
Data rates / quantization [Tatikonda & Mitter 2005][Nair et al. 2007]
Estimation error [Tatikonda & Mitter 2005]

Anytime capacity [Sahai & Mitter 2006]

Maximal admissible delay [Fan & Arcak,2006]

Minimal average delay [Bettesh & Shamai 2006]

AND MANY MORE...
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Prior models generalize under some of these measures.
Ex: Anytime reliability (with parameter change)

p(y1,y2|x)

p(y|z1, x2)fPe g Ry

p(y7 yR‘:Cv :BR)

p(y1,y2|x1, x2)

How do the models change with the measure!?

Can we find models for all measures?
Michelle Effros, LCCC 2012
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Reduction provides a path towards developing a
computational information theory.

This tool was originally explored for capacity but has

since been generalized to other problems:

Joint source-channel coding [Jalali & Effros 2010, 201 []

Non-ergodic channels [Bakshi, Effros & Ho 201 1]
Secure capacity [Dikaliotis,Yao, Ho, Effros & Kliewer 2012]
Noiseless components [Ho, Effros, & Jalali 2010]

The same tool may provide a useful tool for simplifying
the interaction between communications and controls.
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