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Interconnected systemsInterconnected systemsInterconnected systemsInterconnected systems

Materials 
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Large dimensions 
Many nonlinearities
Uncertainty in the interactions
Lots of feedback loopsEconomics & Finance

Ecology
Traffic
Social Networks
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Lots of feedback  loops
Not clear separations

Social Networks
Multi-agents systems

Difficult to analyze/design, abrupt changes, complex unpredicted behaviors 
What are the determining factors?



Interconnected systems: New opportunitiesInterconnected systems: New opportunitiesInterconnected systems: New opportunitiesInterconnected systems: New opportunities

New applications which are network distributed
Estimation
Detection
Control
O ti i ti
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Integrated  theory of control and information
Dynamical system view of distributed computing algorithms 

New developments 5 6
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Focus on multi-agent systems with “simple” agents  



Channels in the LoopsChannels in the LoopsChannels in the LoopsChannels in the Loops

How do communication channels affect networked 
systems?
Concentrate on channel “fading” and additive noiseConcentrate on channel fading  and additive noise
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Uncertainty in the interactions
Lots of feedback  loops

PA PA



Protocol DesignProtocol Design (Elia Eisenbeis TAC11 Padmasola Elia 06)Protocol Design  Protocol Design  

P ypξ1u1

(Elia, Eisenbeis TAC11, Padmasola Elia 06)

New protocols need to focus  on data freshness rather  than data integrity
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% ACK lost

Actuator-Sensor 70% packet drop,  Service channel 50% ACK losses 

% ACK lost



OutlineOutlineOutlineOutline

Unreliable Networks (Fading Network Framework)
Networked control approach to distributed computation of 
averagesaverages 

Limitations due to unreliable communication
Emergence of complex behavior
Mitigation techniques

New perspective on distributed optimization systems
Distributed optimization over unreliable networksDistributed optimization over unreliable networks



Fading Channels as Uncertain SystemsFading Channels as Uncertain SystemsFading Channels as Uncertain  SystemsFading Channels as Uncertain  Systems
Intermittent channel with probability e

μμ

Δ

Re-prarametrization(s)

Model for packet loss in networks (concentrate on fading neglect quantization) 
Special case of analog memory-less multiplicative channel  
Extends to Gaussian fading  channels                             also with memory 



A Simple ProblemA Simple ProblemA Simple Problem  A Simple Problem  

(k) t t ( ) f th t t ti k Plant
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LTI

x(k) state (r.v.)  of the system at time k

Q(k)=E {x(k)x(k)’ }
K

Plant
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Mean Square Stability

K

Linear gain

Noiseless

With hit i i t

Mean Square Stability

With white-noise  input

Minimal Channel Quality  for Mean Square Stability?



A general framework: the Fading NetworkA general framework: the Fading Network (Elia 05)A general framework: the Fading NetworkA general framework: the Fading Network

Fading Network = Mean Network + Uncertainty

(Elia 05)
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IID in k, Independent in i
Zero Mean, var = 
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MG
Mean Network, N, deterministic LTI

M deterministic LTI

MS Stability margin



MS Stability Robustness AnalysisMS Stability Robustness Analysis (Elia 05)MS Stability Robustness Analysis MS Stability Robustness Analysis 

Given stable  with       strictly upper/lower triangular

(Elia 05)

Let w z

Then
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spectral radius MG

CL system MS stable iff Separation result

Based on ElGaoui 95, Ku Athans 77, Willems Blankenship 71, Kleinman 69  Wonham 67.
Related to El Bouhtouri et all 02, Jianbo Lu Skelton 02.



StateState--Feedback with One ChannelFeedback with One ChannelStateState Feedback with One ChannelFeedback with One Channel

State feedback with one memoryless multiplicative channel at 
the plant inputthe plant input

xrw Plant
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For the intermittent channel:



Why is single loop stabilization relevant?Why is single loop stabilization relevant?Why is single loop stabilization relevant?Why is single loop stabilization relevant?
23
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System
• Stable if link 6-1 is present
• Unstable if link 6-1 is  absent
• Mean Stable is e <  0.517
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• Mean Square stable if e < 0.501 
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5 6 Link 6-> 1

system

Similar to one fading channel in the loop



Limitations for MultiLimitations for Multi--agent Systems.agent Systems.Limitations for MultiLimitations for Multi agent Systems.agent Systems.
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Many channels in many loops
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Same tool applies
QoS analysis more complex
Simple mechanism for emergence of complex behaviorSimple mechanism for emergence of complex behavior 



Consensus: a paradigm for distributed computationConsensus: a paradigm for distributed computationConsensus: a paradigm for distributed computationConsensus: a paradigm for distributed computation
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All the nodes are the same.
Each node use the relative error from its neighbors  to update its own state.
The neighbors are determined by a graph.

Under certain conditions

Tsitsiklis, Olfati-Saber,Scutari, Fax, Murray, Zampieri,  Fagnani, Cortes, Pesenti, Giulietti, 
Ren, Beard, Papachristodoulou, Lee, Jadbabaie, Low,….



Basic Graph Basic Graph Theory Theory 
(Laplacian Matrix) We can associate each edge         with a  positive 
weight      , the Laplacian matrix              is defined as

Basic Graph Basic Graph Theory Theory 

Example: For 0-1 weights

1 2

L1 =0

34

The left eigenvector of L associated with zero eigenvalue is all positive if  the graph 
is strongly connected

(Balanced Laplacian) satisfy , needed for averaging(Balanced Laplacian)   satisfy                                           , needed for averaging  



Limitations on Information ExchangeLimitations on Information ExchangeLimitations on Information ExchangeLimitations on Information Exchange

Averaging over unreliable channels + noise ?

β d t i 0β update gain >= 0
ξij packet drop ij channel  Pr ( ξij (k) =  1 )  = μij = QoS
vi total additive noise to node i ;  N(0,1) 

The model  describes very simple-minded  interacting agents

Assume   μij =  μ for simplicity



Fading Network and system decompositionFading Network and system decompositionFading Network and system decompositionFading Network and system decomposition

Uncertainty re-parametrization

State-space Equations for (M, ∆)

M (A B C) has special structure
yp
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PM=(A,B,C) has special structure
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System Decomposition: Block DiagramSystem Decomposition: Block DiagramSystem Decomposition: Block DiagramSystem Decomposition: Block Diagram

FB C Conservedw z

PB C Deviation 

System
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∆ zw

Decomposition: Conserved + Deviation state

When there is no noise or fading,        is the consensus value,        goes to zero



Emergence of new collective complex behaviorEmergence of new collective complex behaviorEmergence of new collective complex behaviorEmergence of new collective complex behavior
1 2

[Wang Elia MTNS10, TAC12]

5
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4

Agents‘ states Loglog plot of the increments of x1

Moment instability leads to power laws behaviors (under suitable assumptions)

Integration of process with unbounded second moment (Levi’s processes)



Emergence of new collective complex behaviorEmergence of new collective complex behaviorEmergence of new collective complex behaviorEmergence of new collective complex behavior

For directed IID switching and strongly connected mean graph,
assume the deviation system converges to  an invariant distribution
driven by Gaussian noise.
Then i h j diff iThen is a hyper-jump-diffusion

Deviation system is Mean Square unstableDeviation system is Mean Square unstable

is a Levy flight,  
for a two-node system ([Kesten]) 
Emergent complex behavior is global (collective)Emergent complex behavior is global (collective)
Long range impact of local criticality. 



Levy flights vs. Normal random walkLevy flights vs. Normal random walkLevy flights vs. Normal random walkLevy flights vs. Normal random walk

Two agent Levy flight
Normal random walk

β =1.35,  μ =0.5,  σ2 =0.02,  

In the distribution of human travel [Brockmann]
In economics and financial series [Mandelbrot, Sornette, Mantegna]
In  foraging search patterns of several species [Raynolds, Bartumeus]
Exploitation cooperative searches and optimization?Exploitation cooperative searches and optimization?
Mitigation strategies ?



MS Stable Consensus with Channel NoiseMS Stable Consensus with Channel NoiseS Stab e Co se sus t C a e o seS Stab e Co se sus t C a e o se

n=10n=10
d=4
β =0.2
e=0.9
Noise var.1e-6



MS Unstable Consensus no NoiseMS Unstable Consensus no NoiseS U stab e Co se sus o o seS U stab e Co se sus o o se

n=10n=10
d=4
β =0.9
e=0.9
Noise var.=0



MS Unstable Consensus with Channel NoiseMS Unstable Consensus with Channel NoiseS U stab e Co se sus t C a e o seS U stab e Co se sus t C a e o se
Emergence of complex behavior

• 10 nodes
• 4 neighbhds
• β =0.9
• e=0.9
• Noise var.1e-6



Unreliable communication: a mechanism for Unreliable communication: a mechanism for 
t b h it b h iemergent behavioremergent behavior

d dConstant speed, averaging directions



A Mechanism for Complex BehaviorA Mechanism for Complex BehaviorA Mechanism for Complex BehaviorA Mechanism for Complex Behavior

Power laws and Levy flights are endemic in complex systems

Often believed due to high-dimensional nonlinear effects 

Presented a simple linear small dimensional LTI system that 
exhibits complex behavior.

Overlooked mechanism: unreliable information exchange.

Checking convex but cumbersomeChecking                                              convex but cumbersome

Robust organizational structures?   

[Wang, Elia CDC08,  Ma, Elia acc12]



Fragility to additive noiseFragility to additive noiseFragility to additive noise Fragility to additive noise 

yu
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Output trajectories

L
x

[Spanos at all]
MIMO pole-zero cancellation

Variation due to [Spanos at all] allows inputs, y converges to average u

p

Average value is lost: (random walk) no useful for distributed computation
State deviations are zero mean  bounded variance
Still OK for tracking/agreement (clock synchronization, load balancing,….)



New algorithm resilient to noiseNew algorithm resilient to noiseNew algorithm resilient to noiseNew algorithm resilient to noise
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Networked controller Output trajectories

Main idea: prevent random walk to show at the output

Networked controller p j

Main idea: prevent random walk to show at the output
Cost: communication and computation is doubled
Problem: not all graph Laplacian can be used (Network controllers?)

Wang Elia Allerton 09



Resilience to channel intermittencyResilience to channel intermittency Wang Elia CDC10Resilience to channel intermittencyResilience to channel intermittency

Need smarter agents: 
know the state of the channels with their neighbors  

Wang Elia CDC10

g
use channel state information (CSI)-- Hold last good message

-

-

M



Example: Average Robust to Switches and NoiseExample: Average Robust to Switches and NoiseExample: Average Robust to Switches and NoiseExample: Average Robust to Switches and Noise

1 2

4 34 3
Approximately correct analog computing

Switching topology Switching topology + additive noise



From Averaging To OptimizationFrom Averaging To OptimizationFrom Averaging To OptimizationFrom Averaging To Optimization

fi (z) strictly convex

u



Optimization SystemsOptimization SystemsOptimization SystemsOptimization Systems

Convex Optimization Problem Lagrangian

Optimization System

Under mild conditions, 

[Wang Elia CDC11, Arrow et al. 58, Paganini10, Rantzer 09]



Control PerspectiveControl PerspectiveControl PerspectiveControl Perspective

Optimization system is a feedback dynamical system
Subject to fundamental limitations of feedback 

Tracking?  Adaptation?  Disturbance rejection?
Multiplier dynamics as dynamic controller
Controller design for optimization systems?

For quadratic programming problem, LTI theory applies!



Distributed Optimization SystemsDistributed Optimization SystemsDistributed Optimization SystemsDistributed Optimization Systems

Agent’s private utility function  (convex, differentiable)

Problem: find optimal

(for simplicity)

Problem: find optimal

Arising in various applicationsArising in various applications
Distributed tracking and localization
Estimation over sensor networks
Large scale optimization in machine learningLarge scale optimization in machine learning
Resource allocation…



New Distributed Optimization SystemNew Distributed Optimization SystemNew Distributed Optimization SystemNew Distributed Optimization System

Local gradients
Undirected connected graph,  L = LT sensing

Related to MOM
Does not require centralized network node

Network

Does not require centralized network node
Different from alternating directions method
Implications for studying bio systems



AugmentedAugmented LagrangianLagrangian and PI Controland PI Control [Wang Elia Allerton 10]Augmented Augmented LagrangianLagrangian and PI Control and PI Control [Wang Elia Allerton 10]

PI Networked controller

Augmented term introduces a proportion gain in the feedback loop
Control interpretation of improved convergence of augmented method
More powerful distributed controllers realizable over the network? 
[Andalam, Elia CDC10, ACC 12] 



Distributed Least Squares over Noisy ChannelsDistributed Least Squares over Noisy ChannelsDistributed Least Squares over Noisy ChannelsDistributed Least Squares over Noisy Channels
N  sensors want to collectively learn , (location of a target)
Each sensor has inaccurate incomplete (scalar) measurements 

Problem: distributedly find the optimal ML estimate x*

Solution :

-

. . .

+

-

+



Simulations: speed + robustnessSimulations: speed + robustnessSimulations: speed  robustnessSimulations: speed  robustness
Ring topology, four nodes, quadratic local utility  

Our model (constant step-size) The gradient descent model
(N di d A 08)(Nedic and Asuman 08)

Double Laplacian robust network organization



RealReal--time Adaptive Optimizationtime Adaptive OptimizationRealReal time Adaptive Optimizationtime Adaptive Optimization

. . .

+

-
-

+
+

Ch i tChanging measurements

Real time adaptation to dataReal-time adaptation to data
Resilient to channel uncertainty 
[Wang, Elia ACC12] 

Resilience to noise and packet-drops



Distributed Adaptive Optimal PlacementDistributed Adaptive Optimal PlacementDistributed Adaptive Optimal PlacementDistributed Adaptive Optimal Placement

AnchorsAnchors

Mobile agents



Networked Controller Design?Networked Controller Design?Networked Controller Design?Networked Controller Design?

Controller order [ 8,11,8]
1 2 3

[Andalam Elia CDC10 ACC 12]

Systematic design of controllers realizable over the network

1 2 3

[Andalam, Elia CDC10, ACC 12] 



ConclusionsConclusionsConclusionsConclusions

Networked Systems  offer many opportunities for new research on 
complex engineered and natural systemsp g y

Key aspect: interplay between information and control

Fading in communication channels is a main mechanism for 
emergence of complex behavior in networked systems

A new control perspective on distributed optimization systems

Moving toward a theory of distributed computation over unreliable 
networks. 

Distributed controller design for networked computational systems


