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Interconnected systems

Materials
System Biology

Social Networks
Multi-agents systems

[
[

» Computers networks » Large dimensions

» Power grid » Many nonlinearities

» Avionics systems » Uncertainty in the interactions
» Economics & Finance » Lots of feedback loops

> Ecolggy c 6 » Not clear separations

» Traffic

»

[

» Difficult to analyze/design, abrupt changes, complex unpredicted behaviors
» What are the determining factors?



Interconnected systems: New opportunities

New applications which are network distributed

» Estimation 3 5
» Detection (Pe-——- @
» Control “\,
» Optimization 4 '@ 1
» Computation
5 6

New developments

» Integrated theory of control and information
» Dynamical system view of distributed computing algorithms

Focus on multi-agent systems with “simple” agents



Channels in the Loops

» How do communication channels affect networked
systems?

» Concentrate on channel “fading” and additive noise

» Uncertainty in the interactions
» Lots of feedback loops




Protocol DeSign (Elia, Eisenbeis TAC11, Padmasola Elia 06)

» New protocols need to focus on data freshness rather than data integrity
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Outline

» Unreliable Networks (Fading Network Framework)
» Networked control approach to distributed computation of
averages
» Limitations due to unreliable communication
» Emergence of complex behavior
» Mitigation techniques
» New perspective on distributed optimization systems
» Distributed optimization over unreliable networks



Fading Channels as Uncertain Systems

Intermittent channel with probability e
r(k) = &(k)u(k) U T

(k) ~ Bernoulli, IID y .

U
u = EBE(R)}, 52 2 B{(E(k) - w)?) g i

Re-prarametrization(s)

r(k) = (1 + A(k))u(k), E{A(k)} = 0;var{A(k)} = 0” = &

r(k) = p(1 + A(k)u(k), B{A(K)} = 0,var{A(k)} = 0> =

l:w‘ Ql

» Model for packet loss in networks (concentrate on fading neglect quantization)
» Special case of analog memory-less multiplicative channel
» Extends to Gaussian fading channels &(k) ~ N(1,0%) also with memory



A Simple Problem

LTI
X
x(k) state (r.v.) of the system at time k ?—> Plant
/e
Q(k)=E {z(k)z(k)" } [
Linear gain

Mean Square Stability

lim Q(k) — 0 for any initial Qg = @Q(0) > 0  Noiseless

k— o0

klim Q(k) — @ for any initial Qo = Q(0) >0  With white-noise input

Minimal Channel Quality for Mean Square Stability?



A general framework: the Fading Network (giaos)

Fading Network = Mean Network + Uncertainty

AN |
Stochastic
Ay
» Uncertainty is Stochastic w1z
A;(k) UDin k, Independent in i Yo u
Zero Mean, var = g2 P § K
2 : Up Y
Al =0 :
n .
e G M

» Mean Network, N, deterministic LTI
M deterministic LTI

MS Stability margin

M,A) =
s ( ) {sup o2 : the closed loop system is MS stable}



MS Stability Robustness Analysis  (glia05)

| Al B | | |
Given M = C ‘ D stable with D strictly upper/lower triangular
) 1M1a]3 ... (| Mapll5 5,
Let M = : - S w
IMpall5 - [ Mppll3 : L &
| P T K
1 i S Ly
Then HMS = =% | N ; Y
o (31) 2t o N
p(-) = spectral radus  — '
CL system MS stable iff o2p(M) < 1 Separation result

Based on ElGaoui 95, Ku Athans 77, Willems Blankenship 71, Kleinman 69 Wonham 67.
Related to El Bouhtouri et all 02, Jianbo Lu Skelton 02.



State-Feedback with One Channel

State feedback with one memoryless multiplicative channel at
the plant input

§(k) = (1 + A(k))
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» For the intermittent channel: %HM”% <l =e<
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Why is single loop stabilization relevant?

Collection of interconnected stable system can be unstable

0.5
Py = U
A- Yp z2(z—1) p

1
| IV,

> (ypi — ypj) ,

JEN;

Upi = N +
System

o Stable if link 6-1 is present
» Unstable if link 6-1 is absent

e Mean Stable is e < 0.517

 Mean Square stable if e < 0.501

|——% system

Similar to one fading channel in the loop



Limitations for Multi-agent Systems.

_

» Many channels in many loops

» Same tool applies

» QO0S analysis more complex

» Simple mechanism for emergence of complex behavior



Consensus: a paradigm for distributed computation

3 2 Discrete-time l (0)
P 0 uf
50;'_ :{L’Z—f—ﬁz aij(a:j—xi) u ".‘PA T
¢ Continuous-time
5 5 T; = Z aij(r; — x;) . Ly .
JEN; PA:ﬁ 17 OI'PA:—

All the nodes are the same.
Each node use the relative error from its neighbors to update its own state.
The neighbors are determined by a graph.

) 1
Under certain conditions tliglo xz‘(t) = ElTx(O)

Tsitsiklis, Olfati-Saber,Scutari, Fax, Murray, Zampieri, Fagnani, Cortes, Pesenti, Giulietti,
Ren, Beard, Papachristodoulou, Lee, Jadbabaie, Low,....




Basic Graph Theory

» (Laplacian Matrix) We can associate each edge (4, 7) with a positive
weight a;j, the Laplacian matrix L = [i;;] is defined as

I {ZjeNiaij ifj =1
1y . )

i — if 9
» Example: For 0-1 weights dij JFi
1 0] 0O —1]
-1 2 O -1
L= -1 -1 2 0]
0 0 -1 1|

L1 =0
» The left eigenvector of L associated with zero eigenvalue is all positive if the graph
Is strongly connected

v

» (Balanced Laplacian) satisfy Z Q;j = Zaﬂ, Vi , needed for averaging
J J



Limitations on Information Exchange

Averaging over unreliable channels + noise ?
zi(k+1) = zi(K)+8 ) &;(k)[x;(k)—z;(k)]+v;(k)
JEN;

#  update gain >=0
§;; packetdropijchannel Pr(¢&;; (k)= 1) = p;; =Q0S

v, total additive noise to node 2 ; N(0,1)

The model describes very simple-minded interacting agents

Assume [i;; = [ for simplicity



Fading Network and system decomposition

zi(k+1) = z;(B)+8 Y & (k) [xj(k)—z;(k))4vi(k)
JEN;

» Uncertainty re-parametrization
§ij=AQ+p  E(A;)=0 Var(Agj) =02 = p(1 — p)

» State-space Equations for (M, A)

A
x(k+1) = Ax(k) + BA(k) C x(k) + Byv(k) l A,
w z
» M=(A,B,C) has special structure P, R
.




System Decomposition: Block Diagram

w : E FB 1. C g;i::,ved
| M f :

PB 71— ¢ F=O—- Deviation
System
|
fﬂﬁ L PAE‘J :
1
/A R _
A

Z

Decomposition: Conserved + Deviation state X = Xc¢ + Xd
1 1
Xe = =1Tx, xa = (1—-=1")x
n n

When there is no noise or fading, Xc is the consensus value, Xd goes to zero



Emergence of new collective complex behavior

states' trajectories
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Agents’ states

log(rank of increments ofx1)

[Wang Elia MTNS10, TAC12]
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Loglog plot of the increments of X,

» Moment instability leads to power laws behaviors (under suitable assumptions)

» X ¢ Integration of process with unbounded second moment (Levi’s processes)



Emergence of new collective complex behavior

For directed IID switching and strongly connected mean graph,

assume the deviation system converges to an invariant distribution
driven by Gaussian noise.

Xc Is a hyper-jump-diffusion Jim {xe(k) = xe(k = 1)} %R, E{RR} =
m—

Deviation system is Mean Square unstable

» Xc is aLevy flight,
for a two-node system ([Kesten])

» Emergent complex behavior is global (collective)
» Long range impact of local criticality.

lim t*Pr(|R| >t) > 0,0 < a <2

t—o0
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Levy flights vs. Normal random walk
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» In the distribution of human travel [Brockmann]
» In economics and financial series [Mandelbrot, Sornette, Mantegna]
» In foraging search patterns of several species [Raynolds, Bartumeus]

» Exploitation cooperative searches and optimization?
» Mitigation strategies ?
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MS Stable Consensus with Channel Noise

n=10

d=4

(3=0.2

e=0.9

Noise var.le-6



MS Unstable Consensus no Noise

n=10

d=4

(6=0.9

e=0.9

Noise var.=0



MS Unstable Consensus with Channel Noise

Emergence of complex behavior

* 10 nodes

* 4 neighbhds

e« 3=0.9

«e=0.9

* Noise var.le-6



Unreliable communication: a mechanism for
emergent behavior

W T T .

ERT. . Sel—

Constant speed, averaging directions



A Mechanism for Complex Behavior

Power laws and Levy flights are endemic in complex systems

» Often believed due to high-dimensional nonlinear effects

» Presented a simple linear small dimensional LTI system that
exhibits complex behavior.

» Overlooked mechanism: unreliable information exchange.

IM1al5 ... I Mpll3

» Checking p( ) convex but cumbersome

1Mpall5 - [ Mppll3 o
» Robust organizational structures? f”/@’j
,;;;L‘ '
I": il VG b o/
..r/

[Wang, Elia CDCO08, Ma, Elia accl12]




Fragility to additive noise

Uu :\ g 6
J »
I I
I L <
z Lz2=1 5 0 5 10
n(k) ~N(O,o _ x 10*
[Spanos at all] () ( ) Output trajectories

MIMO pole-zero cancellation

Variation due to [Spanos at all] allows inputs, ¥y converges to average u
Average value is lost: (random walk) no useful for distributed computation
State deviations are zero mean bounded variance

Still OK for tracking/agreement (clock synchronization, load balancing,....)

LA A A J



New algorithm resilient to noise

U J :
40 > 75t
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Networked controller

~

A

A

Output trajectories

» Main idea: prevent random walk to show at the output
» Cost: communication and computation is doubled
» Problem: not all graph Laplacian can be used (Network controllers?)

w~N(0,Z4) v~N(O,Zy) Wang Elia Allerton 09



Resilience to channel intermittency  wangeiia cocio

Need smarter agents:
» know the state of the channels with their neighbors
» use channel state information (CSI)-- Hold last good message
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Example: Average Robust to Switches and Noise

o2 = a,l%z. = 0.042

1

uw=[1234]

Approximately correct analog computing
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Switching topology Switching topology + additive noise



From Averaging To Optimization

N N
Z5 = arngiani(z) =Y V.fi(z*) =0
i=1 i=1

f; () strictly convex

Vaifi.
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Optimization Systems

Convex Optimization Problem Lagrangian
p* = min f(z) F(z,v) = f(z) + v’ (Az — b)
Az =b p" = maxmin F(z,v)
v e

Optimization System

—V.f(z) — ATy
Ax — b

VoF(x,v)

Under mild conditions, lim z(t) = z*, V (z(0),v(0))

t—0o0

[Wang Elia CDC11, Arrow et al. 58, Paganinil0, Rantzer 09]



Control Perspective

p

g

*

= min f(z) V. F() k
Ax =0 B /Li
v 1 I
= —Vof@@)-ATv @515 = 14 3 ;
= Az —-b -
AT L

Optimization system is a feedback dynamical system
Subject to fundamental limitations of feedback

» Tracking? Adaptation? Disturbance rejection?
Multiplier dynamics as dynamic controller
Controller design for optimization systems?

» For quadratic programming problem, LTI theory applies!




Distributed Optimization Systems

Agent’s private utility function (convex, differentiable)

fi(z) iR — R  (for simplicity) £1(2)

.\fz(Z)

Problem: find optimal /
N
2" = arg min Z fi(2) \ \
i=1

fn(2)

Arising in various applications

» Distributed tracking and localization

» Estimation over sensor networks

» Large scale optimization in machine learning
» Resource allocation...



New Distributed Optimization System

N
mzmz fi(z) = Z fi(z
i=1

! —333 i—1

Vi,9

Undirected connected graph, L = LT
min Z
Lx=0 fz

—Vazf(x) —
Lx

- K-
Il

Related to MOM

Does not require centralized network node
Different from alternating directions method
Implications for studying bio systems

min

N
>_fila
i=1

=0

Local gradients
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Augmented Lagrangian and Pl Control wang Eiia Allerton 10]
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. PT Networked controller_ !

P Augmented term introduces a proportion gain in the feedback loop

P Control interpretation of improved convergence of augmented method

P More powerful distributed controllers realizable over the network?
[Andalam, Elia CDC10, ACC 12]



Distributed Least Squares over Noisy Channels

N sensors want to collectively learn £ € R™ (location of a target)
Each sensor has inaccurate incomplete (scalar) measurements

yi = alras—i—vi, v; ~ N(0,1)

Problem: distributedly find the optimal ML estimate z"

n
_ . . 2
Solution: " = argmin E (ai © —y;)* = argmin || Az — y||3
X T
i=1
P
o
P; = 2a;a}
q1(y1) 7 2t ’ v
5 = s qi = —2Y;0;
qn(Yn) 2 x"
+ 2
1 L= L+
v S




Simulations: speed + robustness

Ring topology, four nodes, quadratic local utility

Our model (constant step-size) The gradient descent model
(Nedic and Asuman 08)
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Real-time Adaptive Optimization

p r
Pl 1 r
Py, A [ \
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Changing measurements

» Real-time adaptation to data
» Resilient to channel uncertainty
[Wang, Elia ACC12]

0 500 1000 1500 2000
time index k

Resilience to noise and packet-drops



Distributed Adaptive Optimal Placement

NS —

+—— Mobile agents




Networked Controller Design?

vxlfl._
V:):NfN
GBI
7 z—1
1% BI 1%
L z—1

Controller order [ 8,11,8]
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Systematic design of controllers realizable over the network

[Andalam, Elia CDC10, ACC 12]



Conclusions

>

Networked Systems offer many opportunities for new research on
complex engineered and natural systems

Key aspect: interplay between information and control

Fading in communication channels is a main mechanism for
emergence of complex behavior in networked systems

A new control perspective on distributed optimization systems

Moving toward a theory of distributed computation over unreliable
networks.

Distributed controller design for networked computational systems



