Computing over Unreliable **Communication Networks**

Nicola Elia Joint work with Jing Wang Dept. of Electrical and Computer Engineering Iowa State University

Acknowledgments to: NSF

Interconnected systems

- **Materials**
- S ystem Biology
- Computers networks
- Power grid
- Avionics systems
-
- **Ecology**
- **Traffic**
- Social Networks
- Multi-agents systems

- Large dimensions
- Many nonlinearities
- *Uncertainty in the interactions*
-
- Not clear separations

▶ Difficult to analyze/design, abrupt changes, complex unpredicted behaviors ▶ What are the determining factors?

Interconnected systems: New opportunities

New applications which are network distributed

- \blacktriangleright Estimation
- **Detection**
- **E** Control
- Optimization
- Computation

New developments

- \blacktriangleright Integrated theory of control and information
- w developments
Integrated theory of control and information
Dynamical system view of distributed computing algorithms

Focus on multi-agent systems with "simple" agents

- ► How do communication channels affect networked systems?
- Concentrate on channel "fading " and additive noise

Uncertainty in the interactions Lots of feedback loops

Protocol Design (Elia Eisenbeis TAC11 Padmasola Elia 06) (Elia, TAC11,

New protocols need to focus on **data freshness** rather than **data integrity**

Actuator-Sensor 70% packet drop, Service channel 50% ACK losses

Outline

- ▶ Unreliable Networks (Fading Network Framework)
- ► Networked control approach to distributed computation of averages
	- **EXA** Limitations due to unreliable communication
	- Emergence of complex behavior
	- **Mitigation techniques**
- New perspective on distributed optimization systems
	- Distributed optimization over unreliable networks

Fading Channels as Uncertain Systems

Intermittent channel with probability e

 $r(k) = \xi(k)u(k)$ \boldsymbol{u} $\xi(k) \sim$ Bernoulli, IID $\mu \stackrel{\triangle}{=}$ $E\{\xi(k)\}, \bar{\sigma}^2 \stackrel{\triangle}{=} E\{(\xi(k) - \mu)^2\}$ Re-prarametrization(s)

 $r(k) = (\mu + \Delta(k))u(k), \mathbf{E}{\{\Delta(k)\}} = 0; var{\{\Delta(k)\}} = \sigma^2 = \bar{\sigma}^2$

$$
r(k) = \mu(1 + \Delta(k))u(k), \ \mathbf{E}\{\Delta(k)\} = 0, \operatorname{var}\{\Delta(k)\} = \sigma^2 = \frac{\bar{\sigma}^2}{\mu^2}
$$

- \blacktriangleright Model for packet loss in networks (concentrate on fading neglect quantization)
- ► Special case of analog memory-less multiplicative channel
- Extends to Gaussian fading channels $\xi(k) \sim N(1, \sigma^2)$ also with memory

 $r\,$

A Simple Problem

 $x(k)$ state (r.v.) of the system at time k

 $Q(k)=E\{x(k)x(k)'\}$

Mean Square Stability

 $\lim_{k \to \infty} Q(k) \to 0$ for any initial $Q_0 = Q(0) \ge 0$ **Noiseless** $\lim_{k\to\infty} Q(k) \to Q$ for any initial $Q_0 = Q(0) \ge 0$ With white-nois
Minimal Channel Quality for Mean Square Stability? With white-noise input

A general framework: the Fading Network (Elia 05)

MS Stability Robustness Analysis (Elia 05)

Based on ElGaoui 95, Ku Athans 77, Willems Blankenship 71, Kleinman 69 Wonham 67. Related to El Bouhtouri et all 02, Jianbo Lu Skelton 02.

State-Feedback with One Channel

State feedback with one memoryless multiplicative channel at the plant input

$$
\xi(k) = \mu(1 + \Delta(k))
$$

For the intermittent channel: $\frac{e}{1-e}||M||_2^2 < 1 \implies e < \frac{1}{\prod |\lambda_i^u(A)|^2} = e^*$

Why is single loop stabilization relevant?

Collection of interconnected stable system can be unstable

$$
P_A: y_p = \frac{0.5}{z(z-1)}u_p
$$

$$
u_{pi} = n_i + \frac{1}{|N_i|} \sum_{j \in N_i} (y_{pi} - y_{pj}),
$$

System

- Stable if link 6-1 is present
- Unstable if link 6-1 is absent
- Mean Stable is e < 0.517
- Mean Square stable if e < 0.501

Similar to one fading channel in the loop

Limitations for Multi-agent Systems.

- Many channels in many loops
- Same tool applies
- ▶ QoS analysis more complex
- Simple mechanism for emergence of complex behavior

Consensus: ^a paradigm for distributed computation

All the nodes are the same.

Each node use the relative error from its neighbors to update its own state. The neighbors are determined by a graph.

Under certain conditions

$$
\lim_{t \to \infty} x_i(t) = \frac{1}{n} \mathbf{1}^T x(0)
$$

Tsitsiklis, Olfati-Saber,Scutari, Fax, Murray, Zampieri, Fagnani, Cortes, Pesenti, Giulietti, Ren, Beard, Papachristodoulou, Lee, Jadbabaie, Low,….

Basic Graph Theory

(**Laplacian Matrix**) We can associate each edge (i, j) with a positive Þ weight a_{ij} , the Laplacian matrix $L = [l_{ij}]$ is defined as

$$
l_{ij} := \begin{cases} \sum_{j \in N_i} a_{ij} & \text{if } j = i \\ -a_{ij} & \text{if } j \neq i \end{cases}
$$

Example: For 0-1 weights

$$
L = \begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}
$$

 L **1** =0

The left eigenvector of L associated **with zero eigenvalue** is all positive if the graph is **strongly connected**

▶ (Balanced Laplacian) satisfy
$$
\sum_j a_{ij} = \sum_j a_{ji}, \forall i
$$
, needed for averaging

Limitations on Information Exchange

Averaging over unreliable channels + noise ?

$$
x_i(k+1) = x_i(k) + \beta \sum_{j \in N_i} \xi_{ij}(k)[x_j(k) - x_i(k)] + v_i(k)
$$

- β update gain >= 0
- $\xi_{ij}\;$ packet drop ij channel Pr ($\xi_{ij}\left(k\right)=\;1\;) \;=\; \mu_{ij}\;$ = QoS
- v_i $_i$ total additive noise to node i ; N(0,1)

The model describes very simple-minded interacting agents

Assume $\ \mu_{ij}$ = μ for simplicity

Fading Network and system decomposition

$$
x_i(k+1) = x_i(k) + \beta \sum_{j \in N_i} \xi_{ij}(k) [x_j(k) - x_i(k)] + v_i(k)
$$

DED Uncertainty re-parametrization

$$
\xi_{ij} = \Delta_{ij} + \mu \qquad E(\Delta_{ij}) = 0 \qquad Var(\Delta_{ij}) = \sigma^2 = \mu(1 - \mu)
$$

State-space Equations for $(M,\,\Delta)$ Δ. $\chi(k+1) = A \chi(k) + B \Delta(k) C \chi(k) + B_v v(k)$ w z y_p $M = (A, B, C)$ has special structure $||P\rangle$ A N P_A $u_{\rm p}^{}$ \boldsymbol{v}

M

Decomposition: Conserved + Deviation state $\chi = \chi_c + \chi_d$

$$
\chi_c = \frac{1}{n} 1^T \chi, \quad \chi_d = (1 - \frac{1}{n} 1^T) \chi
$$

When there is no noise or fading, χ_c is the consensus value, χ_d goes to zero

Emergence of new collective complex behavior

Moment instability leads to power laws behaviors (under suitable assumptions)

 $\blacktriangleright \chi_c$ Integration of process with unbounded second moment (Levi's processes)

Emergence of new collective complex behavior

For directed IID switching and strongly connected mean graph, assume the deviation system converges to an invariant distribution driven by Gaussian noise.

 $\frac{1}{2}$ then $\frac{1}{2}$ $\dot{\varepsilon}$ $\;$ is a hyper-jump-diffusion

Deviation system is Mean Square unstable

- $\lim_{t\to\infty} t^{\alpha} \Pr(|R| > t) > 0, 0 < \alpha \leq 2$ \blacktriangleright X_c is a Levy flight, for a two-node system ([Kesten])
- Emergent complex behavior is global (collective)
- Long range impact of local criticality.

Levy flights vs. Normal random walk

- ▶ In the distribution of human travel [Brockmann]
- ▶ In economics and financial series [Mandelbrot, Sornette, Mantegna]
- ▶ In foraging search patterns of several species [Raynolds, Bartumeus]
- **Exploitation** cooperative searches and optimization?
- **Mitigation** strategies ?

MS Stable Consensus with Channel Noise

n=10 d=4 $\beta = 0.2$ e=0.9 Noise var.1e-6

MS Unstable Consensus no Noise

n=10 d=4 $\beta = 0.9$ e=0.9 Noise var.=0

MS Unstable Consensus with Channel Noise

ピ

Emergence of complex behavior

- 10 nodes
- 4 neighbhds
- \bullet β =0.9
- e=0.9
- Noise var.1e-6

Unreliable communication: a mechanism for emergent behavior

Constant spee d, averaging directions

A Mechanism for Complex Behavior

Power laws and Levy flights are endemic in complex systems

- ► Often believed due to high-dimensional nonlinear effects
- **Presented a simple linear small dimensional LTI system that** exhibits complex behavior.

▶ Overlooked mechanism: unreliable information exchange.

Example ρ $\begin{pmatrix} \|M_{11}\|_2 & \cdots & \|M_{1p}\|_2 \\ \vdots & \cdots & \vdots \\ \|M_{n1}\|_2^2 & \cdots & \|M_{pp}\|_2^2 \end{pmatrix}$ convex but cumbersome

Robust organizational structures?

[Wang, Elia CDC08, Ma, Elia acc12]

Fragility to additive noise

- Variation due to [Spanos at all] allows inputs, y converges to average u
- **Average value is lost:** (random walk) no useful for distributed computation
- State deviations are zero mean bounded variance
- Still OK for tracking/agreement (clock synchronization, load balancing,….)

New algorithm resilient to noise

- Main idea: prevent random walk to show at the output \blacktriangleright
- Cost: communication and computation is doubled Þ
- Problem: not all graph Laplacian can be used (Network controllers?) Þ

$$
w \sim \mathcal{N}(0, \Sigma_w) \quad v \sim \mathcal{N}(0, \Sigma_v)
$$

Wang Elia Allerton 09

Resilience to channel intermittency

Wang Elia CDC10

Need smarter agents:

- know the state of the channels with their nei ghbors g
- ► use channel state information (CSI)-- Hold last good message

Example: Average Robust to Switches and Noise

$$
\beta = 0.04, \mu = 0.5
$$

\n
$$
\sigma_{v_i}^2 = \sigma_{w_i}^2 = 0.04^2
$$

\n
$$
u = [1 \ 2 \ 3 \ 4]'
$$

Approximately correct analog computing

Switching topology Switching topology + additive noise

From Averaging To Optimization

Optimization Systems

Convex Optimization Problem Lagrangian

$$
p^* = \min_{x} f(x)
$$

$$
Ax = b
$$

$$
F(x,\nu) = f(x) + \nu^T(Ax - b)
$$

$$
p^* = \max_{\nu} \min_{x} F(x, \nu)
$$

Optimization System $\dot{x} = -\nabla_x F(x, \nu) = -\nabla_x f(x) - A^T \nu$
 $\dot{\nu} = \nabla_\nu F(x, \nu) = Ax - b$

Under mild conditions,
$$
\lim_{t \to \infty} x(t) = x^*
$$
, $\forall (x(0), \nu(0))$

[Wang Elia CDC11, Arrow *et al*. 58, Paganini10, Rantzer 09]

Control Perspective

- Optimization system is a feedback dynamical system \blacktriangleright
- Subject to fundamental limitations of feedback ь.
	- **F** Tracking? Adaptation? Disturbance rejection?
- Multiplier dynamics as dynamic controller Þ.
- **EX Controller design for optimization systems?**
	- For quadratic programming problem, LTI theory applies!

Distributed Optimization Systems

Agent's private utility function (convex, differentiable)

Arising in various applications

- Distributed tracking and localization
- Estimation over sensor networks
- Large scale optimization in machine learning
- Resource allocation…

New Distributed Optimization System

Augmented Lagrangian and PI Control [Wang Elia Allerton 10]

Augmented term introduces a proportion gain in the feedback loop Control interpretation of improved convergence of augmented method More powerful distributed controllers *realizable* over the network? [Andalam, Elia CDC10, ACC 12]

Distributed Least Squares over Noisy Channels

N sensors want to collectively learn $x \in \mathbb{R}^n$ (location of a target) Each sensor has inaccurate incomplete (scalar) measurements

$$
y_i = a_i^T x + v_i, \ v_i \sim N(0, 1)
$$

Problem: distributedly find the optimal ML estimate x^\star

Simulations: speed + robustness

Ring topology, four nodes, quadratic local utility

Double Laplacian robust network organization

Real-time Adaptive Optimization

Resilience to noise and packet-drops

Distributed Adaptive Optimal Placement

Networked Controller Design?

Systematic design of controllers *realizable* over the network

[Andalam, Elia CDC10, ACC 12]

Conclusions

- ► Networked Systems offer many opportunities for new research on complex engineered and natural systems
- ► Key aspect: interplay between information and control
- **Fading in communication channels is a main mechanism for** emergence of complex behavior in networked systems
- A new control perspective on distributed optimization systems
- ► Moving toward a theory of distributed computation over unreliable networks.
- Distributed controller design for networked computational systems