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A Discrete Memoryless Channel

X—input alphabet (finite).
Y—output alphabet (finite).
W (y|x)—channel law.

Channel is memoryless: ©4,...,0, are |lID and

Yk:g(xk,@k),kzl,...,n.



Encoders with or without Feedback
M ={1,..., M }—message set.

n—Dblocklength.
R—rate, i.e., n~1 log M.

Blocklength-n encoder without feedback:
fiM— X",
with the m-th message transmitted as
x(m) = f(m) = (xl(m), ... ,x,,(m)).
Blocklength-n encoder with feedback:
ATM—=X, b MxY—= X, Mx Y5 x,
with the m-th message transmitted as

x(m) = (R(m). f(m. V). folm, Y7

= (Xl(m),X2(m, Yl), . 7Xn(ma Yn_l))‘



Decoders, Errors, and Erasure

A decoder ¢ is a mapping
¢ Y" > MU{?}.
Success is when ¢(Y) = m.

Two failure modes:
e An erasure is when ¢(Y) =7.
e An error is when ¢(Y) € M\ {m}.



Channel Capacity

The channel capacity C is the supremum of achievable rates,
where a rate R is said to be achievable if for every ¢ > 0 we can
find a sufficiently large positive integer ng such that for all
blocklengths n exceeding ng there exists a rate-R blocklength-n
encoder f and and a decoder ¢ such that

Pr(o(Y) € M\{m} | M = m)+Pr(¢(Y) =?|M =m)<e, me M.
We allow both errors and erasures but with small probability.

In the presence of feedback it is denoted Crg.



Zero-Error Capacity

The Zero-Error Capacity (Cp is the supremum of achievable rates
with

Pr(qﬁ(Y) e M\{m} ‘ M = m)+Pr(¢(Y) =7 ‘ M = m): 0, me M.
We allow neither erasures nor errors

In the presence of feedback it is denoted (g rg.



Erasures-Only Capacity

The Erasures-Only Capacity C.. is the supremum of achievable
rates with

Pr(o(Y) e M\ {m} | M=m)=0, meM

and
Pr(p(Y) =?|M =m)<e, me M.

We do not allow errors, but we do allow erasures
(with small probability).

In the presence of feedback it is denoted Ce, Fi-



Computing C, Cy, and Ce,
Shannon'48:
C =max/(X;Y),

where the maximum is over all input distributions.



Computing C, Cy, and Ce,
Shannon'48:
C =max/(X;Y),

where the maximum is over all input distributions.

Co is unknown.

We do know that y is positive if, and only if, we can find
x,x" € X that are not confusable, i.e., forall y € Y

W(y|x) - W(y|x) = 0.

(When one is positive the other is zero.)



Computing C, Cy, and Ce,
Shannon'48:
C = maxI(X;Y),

where the maximum is over all input distributions.

Co is unknown.

We do know that y is positive if, and only if, we can find
x,x" € X that are not confusable, i.e., forall y € Y

W(ylx)- W(y|x') = 0.

(When one is positive the other is zero.)

Ce.o is unknown.

We do know that C., is positive if, and only if, we can find
x,x" € X and some y € ) such that

W(y|x) >0 and W(y|x") =0.

Some y is reachable from x but not from x’.



Co and the Adjacency Graph

e We say that x and x’ are confusable if for some y € ) both
W(y|x) and W(y|x') are positive.

e The adjacency graph has vertices X, and x and x’ are
connected by an edge if they are confusable.

e (p is determined by this graph. Only the zeros of W(-|)
matter.



When is Cy Positive?

e (Cp > 0if, and only if, 3x, x’ that are not confusable.



When is Cy Positive?

e (Cp > 0if, and only if, 3x, x’ that are not confusable.

e Sufficiency: Use x and x’ to send a bit per channel-use.

e Necessity: Assume that the condition is not met. Suppose
both x = (x1,...,x,) and X' = (x],...,x},) are codewords.
Since x and x;_are confusable, there exists an output y; that
is reachable from both. The output (yf,...,y;) cannot be
decoded with zero probability of error.



Cors

Shannon’56:

0 if Go=0
Core = 1 _
log 5 otherwise

where

p = min max Z Q(x).

Q ¥&¥ x:W(y|x)>0

Claude Shannon
(1916-2001)



The Converse when Cy > 0

Let f1,...,f, be given.
Will exhibit outputs y;, ..., y, that can be produced by at least
p" # M messages.



The Converse when Cy > 0 Contd.

My E{meM:f(m)=x}, xeAX,

o #M,

Pl(X) #M s

x e X.

Choose y;* as the argmax in

p = min max Z Q(x) < max Z P1(x)

Q yey x:W(y|x)>0 y x:W(y|x)>0
1
-2 g 2 M
W(y;|x)>0 x:W(y[x)>0

_ _#M(l)

x:W(y;|x)>0



The Converse when Cy > 0 Contd.

MP 2 {me MY f(m,yi) =x}, xea,
o # MY
H#EMA)

Choose y; as the argmax in

= mi > P
p = min r;ea)); Z Q(x) > r;‘nea;}( Z 2(x)
x:W(y|x)>0 x:W(y|x)>0

_ P2(x):#/\1/l(1) S am®

x:W(y5|x)>0 x:W(y5|x)>0

1 # M3
YVIORd ( U Mx) T H#EMOD)

x:W(y5|x)>0

P2(X) x e X.




The Converse when Cy > 0 Contd.

After n steps we obtain

# MO # M) 4 M)
#M ?#M(1)7"‘7#M(n_1)2p'

Consequently,
(n)
#M > p".
# M

But for zero error we must have #M(”) =1, so

#FM<p",

1 1
—log # M < log —.
n p



A Simple Upper Bound on p
If Cy is positive, then

1
p<1—#7 Co > 0.

Pf: Recall that
p = min max Z Q(x).

Q ey x:W(y|x)>0

Now choose @ (perhaps suboptimally) to be uniform

p§ma)>}< Z #

S
Y= W(y|x)>0

#1 max #{x W(y|x) > 0}

1
—# 7 (#Xx-1),
because if there were a y with W/(y|x) positive for all x then Cp
would be zero.



Achievability

Assume Cp > 0. Let P* achieve p:

p = min max Z Q(x) = max Z P*(x).

Q y
x:W(y|x)>0 x:W(y|x)>0

By choosing ceilings/floors judiciously, we find nonnegative
integers { My }xex s.t.

my 1

= P*(x) & ——, e xX.
Fam - PEgg ~
Choose my of the messages in M to result in x; being x:
# M . 1
=P + , € X.
M O~



Achievability Contd.

After observing y1, the survivor set M) is
MO =] M,
x:W(y1|x)>0
Its cardinality is upper-bouned by:
#MD = Y HM,
x:W(y1|x)>0

< D> (#EMP()+D)

x:W(y1|x)>0

< max Z (#MP*(x) +1)

Y x:W(y|x)>0
=# Mp+ mfx#{x : W(ylx) > 0}
<HMp+ (#X-1),

where the last line is b/c Cy > 0, so no y is reachable from all x's.



Achievability Contd.

After observing y1, we choose the sets
./\/l>(<1) £{me MWD fH(m,yp) = x}, xeXx

so that @
# M, 1
am ~ P

After observing y» the survivor set M(?) is

MO = ) MmO

x:W(y2|x)>0

x e X.

Its cardinality is upper-bounded by:

# M < MOp 4 (#x 1)
SH#EMP +(p+1)(#X 1)



Achievability Contd.

After observing yi, . .., yk, the survivor set M(K) satisfies
# MO < Mp* + (PR 1) (X - 1)
< HMp (X - 1)
SH#EMP FHX(HX 1)

Thus, if # M = |p~"] we can reduce the survivor set to a
singleton in n+ [logy(1 + # X(# X — 1))] channel uses for a
total rate of

log|[p~"]
n+ [logy(1+# X(#X —1))]

1
— log —.
P



Co.re Can Exceed G

For some channels

Core > Go

Peter Elias
(1923-2001)

Aclkmowledgement

I am indebted to Peter Elias for first
pointing out that & feedback link could increase
the zero-error capacity, as well as for several

suggestions that were helpful in the proof of
Theorem 7.



The Z-Channel

1 o1
1—¢

e If y =1, then x must be 1.
Ly) = {m € M : xj(m) =1 whenever y; = 1}‘

o If # L(y) =1, we can decode error-free. Otherwise we must
declare an erasure.



For the Z-Channel C., = C

Let the received sequence y = y1,..., ¥, have v; ones.

Assume each codeword has ng zeros and n; = n — ng ones.
p(ylx(m)) = (1 — ) e, m e L(y).

All the messages in L(y) have the same likelihood.

The erasures-only decoder is identical to an ML decoder that
declares a failure if there are ties.

Since constant-composition codes with an ML decoder that
declares a failure in the case of ties achieve capacity

Ceo = C.

In particular,
Ce-o > 0 whenever € < 1.



When is Co, > 07

(Ce_o > O) & <E|x,x’,y - W(y|x) > 0and W(y|x") = O).



When is Co, > 07

(Ce_o > O) & (Elx,x’,y - W(y|x) > 0and W(y|x") = O).

Necessity: If every reachable y is reachable from all inputs, then no
output sequence can be decoded error-free.



Sufficiency

Let x, x’, y be as above:

W(y|x) >0 and W(y|x") = 0.

e Use only x, x’, and define
v 0 ifY#y
1 otherwise.
e This induces a Z-channel

x' @—>0 0

X o1

W(ylx)

e And for this Z-channel Co.u = C > 0.



The Z-Channel Is Very Useful

NACKs

ACK

e To send NACK send 0,0, ...,0 (v times).
e Tosend ACK send 1,1,...,1 (v times).

e |f 1 is received at least once, declare “ACK". Otherwise,
“NACK".

With this approach

Pr(“"ACK" |[NACK) = 0,
Pr(“NACK" |ACK) < (1 —€)”.



Ce—o,FB

Bunte & AL: We don't know Ce,, but we do know Ce, !

. _Jo ifco=0
eoFB C otherwise.



Ce—o,FB

Bunte & AL: We don't know Ce,, but we do know Ce, !

. _Jo ifco=0
=oFB 7 ¢ otherwise.

The proof that

(G=0) + (Gora =0

is straightforward: if Co, = 0, then every reachable y is reachable
from all x’s, and no output sequence can be decoded also in the
presence of feedback.



Achievability of C.o g when Co, >0

Phase I:

e Send theNmessage using a blocklength-n encoder # and
decoder ¢ of rate (nearly) C that have a maximal probability
of error smaller than §/2.

e Form the tentative decision ¢(Y1,..., Yy).

e This tentative decision is known to the transmitter via the
feedback.

Phase II:

e Send an ACK or NACK v times with v large enough so that
Pr(“NACK" |ACK) < §/2.

Produce the tentative decision if “ACK"; otherwise an erasure.



Analysis of Two-Phase Scheme

Pr(error! M=m) = Pr(qE(Y) # m|M = m)Pr(“ACK" | NACK)
=0.

Pr(erasure ‘ M=m) = Pr(qNS(Y) # m‘ M = m) Pr(“NACK" } NACK)
<5/2
+ Pr(g(Y) = m| M = m) Pr(“NACK" | ACK)

<5/2

<é.



Ceors Can Exceed Ce,

C o—m>o C

Since Ce, is positive, Ceo g = C, and
Ceore ~log3, e< 1l
However, as we next argue,

Ceo = 1.



Ce.ors Can Exceed C., Contd.

a o d

C o—————>o0 C

If
(y17 ey Yi-1,a, Yi41, - - 7Yn)
is decoded to m, then so can

()/17 ceey Yi-1, b7.yf+17 cee ?yn)a

and this reduces the probability of erasure. Thus, for the purposes
of Ceo, we can combine the outputs a and b to a single output
{a, b}. This reduces the size of the output alphabet to 2.



Thank You!
Regular Capacity:
Ceg = C.
Zero-Error Capacity:

0 if Co=0
Cor = 1 .
log 5 otherwise

where

p=min r;ﬂeag}( Z Q(x).
x:W(y|x)>0

Erasures-Only Capacity:

¢ _Jo ifco=0
oFB 7 ¢ otherwise



