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» I
Random Variables In
Communications

In communications, unknown quantities/signals are usually modelled as
random variables (rv’s) & random processes, for good reasons:

0 Physical laws governing electronic/photonic circuit noise give rise
to well-defined distributions & random models — e.g. Gaussian
]’Ehgrmal etlectromc noise, binary symmetric channels, Rayleigh

ading, etc.

0 Telecomm. systems usually de_signed to be used many times, &
each |tnd|tv|dual phone call/email/download may not be critically
important...

=>» System designer need only seek good performance in an
average or expected sense - e.g. bit error rate, signal-to-noise
ratio, outage probability.



" A
Nonrandom Variables in Control

In contrast, unknowns in control are often treated
as nonstochastic variables or signals

m Dominant disturbances are not necessarily
electronic/photonic circuit noise, & may not
follow well-defined probability distributions.

m  Safety- & mission-criticality

= Performance guarantees needed every
time plant is used, not just on average.



Networked Control

Networked control: combines both
communications and control theories!

> How may nonstochastic analogues

of key probabilistic concepts like
independence, Markovness and
information be usefully defined?



W .
Another Motivation:

Channel Capacity

The ordinary capacity C of a channel is defined as
the highest block-code bit-rate that permits an
arbitrarily small probability of decoding error.

. |O F (subadditivity) . .
l.e. C:=lim supsup 1 L R lim lim sup
e0 120 t+1 £-50t—00 t+1

log, |F;

where F.:=a finite set of input words of length ¢ +1,
& the inner supremums are over all F, s.t. Vx(0:t)e F,
the corresponding random channel output word Y(0:¢)

can be mapped to an estimate X (0:t) with Pr[)A( (0:t)=#x(0: t)] <E&.



Information Capacity

Shannon's Channel Coding Theorem essentially
gives an information-theoretic characterization of C
for stationary memoryless stochastic channels:

[ X(0:t);Y(0:1)]

C =supsup [X(0:1:Y(0:0)] = lim sup

£>0 f+1 f—o0

(=supl[X(0);Y(0)]),

where I[--]:=Shannon's mutual information functional,

and the inner supremums are over all random input sequences X(0:1).
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Zero-Error Capacity

In 1956, Shannon also introduced the stricter notion of
zero - error capacity C,, the highest block-coded bit-rate
that permits a probability of decoding error = 0 exactly.

l.e. C, = supsuplogz—“:’| = lim sup

t>0 + f—oo

log, |F;|

where F.= a finite set of input words of length ¢ +1,
& the inner supremums are over all F, s.t. Vx(0:t)e F,
the corresponding channel output word Y(0:t)

can be mapped to an estimate X (0:t) with Pr[f( (0:f)=x(0: t)] =0.

Clearly, C, is (usually strictly) smaller than C.



W .
CO as an

“Information” Capacity?

Fact: CO does not depend on the nonzero
transition probabilities of the channel,

and can be defined without any probability
theory, in terms of the input-output graph that
describes permitted channel transitions.

= Q: Can we express C0 as the maximum rate of
some nonstochastic information functional?



Outline

m (Motivation)
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m [axicab Partitions & Maximin Information
m COvia Maximin Information

m Uniform LTI State Estimation over
Erroneous Channels

m Conclusion
m Extension & Future Work



" A
The Uncertain Variable
Framework

m  Similar to probability theory, let an uncertain variable (uv) be a mapping X
from some sample space Q to a space X.

m E.g., each we Q may represent a particular combination of disturbances &
inputs entering a system, & X may represent an output/state variable

m For any particular w, the value x=X(w) is realised.

X

Unlike prob. theory, assume no o-algebra or measure
on Q.
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"
Ranges

As in prob. theory, the w-argument will often be omitted.
Marginal range | X |={X(®0):0eQ}cX
Joint range [ X.,Y|:= {(X(a)),Y(a))) ‘o e Q} c XxY.
Conditional range | X | y|={X(®):Y(0)=y,0 eQ} cX.

In the absence of statistical structure, the joint range completely characterises
the relationship between uv's X &Y.

As [x.Y]= U [XIy]x {0

re[Y]
the joint range can be determined from the conditional & marginal ranges,
similar to the relationship between joint, conditional & marginal probability
distributions.
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Unrelatedness
X,Y called unrelated if

[XY1=[Xx1<1Y],

or equivalently if
[X1y]=[X], vye[Y]

Parallels the definition of mutual independence for rv's.

Called related if | X,Y [ <[ X]x[Y |, without equality.
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f
] [XI=[x1y]

a) X,Y related b) X, Y unrelated



"
Nonstochastic Entropy

The a priori uncertainty associated with a uv X is captured by
Hartley entropy Hy[X]:=1log,|[ X ]| €[0,c0]

Continuous-valued uv's yield H,[X]=co.
— For uv's with Lebesgue-measurable range in R”,
the 0-th order Re'nyi differential entropy
h,[X]:=log, u X | & [—o0,00]
IS more useful.
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" I
Nonstochastic Information —
Previous Definitions

H. Shingin &Y Ohta, NecSys09:

[X] .
yw{ﬁﬂ log {‘[[‘ ‘ J X discrete-valued
( u[X]

\u[X1y]
(expressed in the uv framework here)

LIX:Y] =

inf o
ye[Y] J

], X continuous-valued

G. Klir, 2006:
riceype LKLY T-H XY, X.Y finite-valued
o Something complex, (X,Y) cont.-valued w. convex range — R"
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» BN
Comments on
Previous Definitions

m Each gives different treatments of continuous &
discrete-valued variables.

m Klir's information has natural properties, but is
purely axiomatic. No demonstrated relevance to
problems in communications or control.

m Shingin & Ohta’s information: inherently
asymmetric, but shown to be useful for studying
control over errorless digital channels.
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Taxicab Connedctivity

A pair of points (x,y), (x',y") €[ X,Y] is called taxicab connected,

denoted (x,y) <> (x',y"), if 3 a finite sequence ((x;,y;))_, in [X,Y]

1) beginning from (x,,y,) = (X,y),

i) ending in (x_,y.)=(x",y’),

lii) and with each point in the sequence differing in at most one coordinate
from its predecessor.

Every point in this sequence must yield the same z-value
as its predecessor, since it has either the same x- or y-coordinate.
= By induction, (x,y)&(x',y"') yield the same z-value.
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»
Taxicab Connectedness

y/

Examples

([[X, Y]] = shaded area)

y/

(X,y) <> (x',y),

but disconnected in usual sense.

X

(X,y) £ (x',y),
also disconnected in usual sense

(x,y) == (x'y'),
but connected in usual sense.
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" I
Taxicab Partition and
Nonstochastic Information

Thm: There is a unique partition 7~ of | X,Y | in which

a) every pair of points in the same partition set is taxicab connected, but
b) no pair of points in different partition sets is taxicab connected.

Can be established that 7~ defines the most refined shared
data Z that can be unambiguously determined from X or Y alone.

— Define maximin information | [X;Y]:= |092‘7 ‘
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" A
Interpretation as
a Common/Shared Variable

m Suppose X & Y are separately observed by two agents.
m Let the agents have functions f & g respectively s.t.
(X)=g(Y)=:2Z
< The agents can unambiguously agree on the value of
the common variable Z

m [he more distinct values Z can take, the more refined is
this shared knowledge.

m [he values of Zinduce a partition of the joint range [[ X, Y]].

m Taxicab partition = the [[ X, Y]]-partition induced by the most
refined common variable Z.



Examples

([[X, Y]] = shaded area)

z=1 : z=0 X

|7 |=2=max.# distinct values
that can always be agreed on
from separate observationsof X & Y.

z=0

z=0

| 7" |=1=max.# distinct values
that can always be agreed on

from separate observations of X & Y.
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" I
Some Key Properties

*
of |
Symmetry :
'[X:Y]=I[Y; X].
More Data Can't Hurt :
I[X:Y]LT XY W]
"Data Processing"” :

If W <> X <> Y is a Markov uncertainty chain, then
'[W:Y]<T[W: X].

26



"
Uncertain Signals & Stationary
Memoryless Channels

Def : An uncertain signal X is a mapping from Q to the space
X” of discrete-time signals x : Z_, — X.

Def : A stationary memoryless uncertain channel consists

of a set-valued transition function T : X — 2", and the family of all
uncertain input-output signal pairs (X,Y) s.t.

[Y(K) | x(0:k),y(0:k=N)]=[Y(k) | x(k)]|=T(x(k)) <,
V(x,y)e [[X,Y]], keZ.,,.
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=
Channel Coding Theorem

for Zero-Error Communication

Thm: The zero-error capacity C, of a stationary memoryless
uncertain channel coincides with the highest average rate of
maximin information possible across it i.e.

C = sup I*[X(O:z‘);Y(O:z‘)]:Iim b

I [X(0:t);Y(0:1)]

>0, XXX~ t+1 t=20 y04)TIX (0t e X ™ f+1

Note : C, is defined operationally, as the largest rate over all block codes
that permit unambiguous recovery of the input sequence.
This result gives an intrinsic characterization.
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W .
Remarks

The idea of a common (random) variable Z comes from
cryptography [Wolf & Wullschleger, ITW2004]

There, Zis formally defined by the connected components of
the éjiscrete bipartite graph describing (x,y) pairs having joint
prob.> 0.

Taxicab connectedness generalises this to continuous-valued
and mixed pairs of variables, not representable by discrete
graphs.

CO0 was shown by Wolf & Wullschleger to coincide with the
maximum Shannon entropy rate over all common rv's Z
However, this is still a probabilistic characterisation.

Maximin information coincides with the Hartley entropy of the
maximal common rv Z
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W
State Estimation of

Disturbance-Free LTI Systems

X+1)=AX(@), Y(@#)=GX (), X(O)auv.

Coder :Y(0:7) > S(¢)e S. No channel feedback.
Erroneous Channel : S — 2°

Estimator : O(0:¢) — X (t+1)

Given parameters p,[ >0, the objectives are

I) p-exponential uniformly bounded estimation errors :

For any uv X (0)s.t.I X (0) K1, sup p™

120,02

II) p-exponential uniform convergence :

For any uv X (0)s.t.Il X(0)II</, limsupp™’
1= e

X (1) — X(t)H < oo,

X(r)— X(r)H ~ 0.
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Assumptions

DF1:(G,A,)1s observable, where A, := A restricted to invariant subspace

governed by | eigenvaluel's = p.

DF2 : The channel does not depend on the initial plant state,
1.e. the output sequence Q(0:7) is conditionally unrelated to X (0),
given channel input sequence S(0:1),
X0)eSO0:1)>0(00:1)

DF3: A hasoneor moreleigenvaluel's > p



" A
Criterion without Disturbances

If p-exponential uniformly bounded estimation errors are achieved

for some [/ > 0, then

C, 2 Z:log2

A 1>p

A

0

Conversely, if (*) holds strictly, then for any [ > 0, a coder - estimator

=H, ()

that achieves p - exponential uniform convergence can be constructed.

(Proof of second part : constructive. j

Proof of first part : maximin information theory



W .
LTI State Estimation

With Plant Disturbances

Xt+)=AX@®)+V(@), Y@)=GX(@)+W(2),

Assumptions :

DO0: (G, A)is detectable.

D1 : A has one or morel eigenvaluel's > 1.

D2 : Realisations of V & W are uniformly bounded in 7 _.

D3 : The null signals v, w = 0 are valid disturbance realisations.

D4: X (0),V & W are mutually unrelated.

DS : The channel does not depend on the plant states and disturbances, 1.e.
the channel output Q(0:¢) 1s conditionally unrelated with
(X 0),VO:t—1),W(@: t)), given the channel input S(0: 1),

(X (0),V(:t=1),W(0:1)) > S(0:1) <> Q(0:1)
12



W
Criterion with Disturbances

If uniformly bounded estimation errors are achieved for some [ > 0, then

C, 2 Z:log2 W I=H. (%)

14,121

Conversely, if (**) holds strictly, then for any [ > 0, a coder - estimator

that achieves uniformly bounded estimation errors can be constructed.
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" A
Remarks

m |n a stochastic setting (i.e. random channel and X(0)) with no
plant noise, it is known that almost-sure asymptotic
convergence is possible iff ordinary capacity C > H (Matveev
& Savkin 2007).

The criterion here is stricter because a law of large numbers
cannot be used to average out decoding errors.

m [f bounded, nonstochastic disturbances are present, they
showed that a.s. uniformly bounded errors are possible iff

CO > H. Proof used no info theory
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Conclusion

m Formulated a framework for modelling unknown variables without
assuming the existence of distributions

m Defined nonprobabilistic analogues of independence & Markovness

m Proposed maximin information as a nonstochastic index of the most
refined knowledge that can be agreed on from separate
observations of two variables

m Showed that zero-error capacity coincides with the highest maximin
info rate possible across the channel

m Used maximin info theory to derive tight conditions for uniform state
estimation of LTI plants
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W .
Future Work

m Channels with input or memory constraints
m Network maximin information theory

m Systems with feedback — preliminary
results to appear in CDC 2012
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" A
Extension
- Zero Error Feedback Capacity

Theorem (GN, to appearin CDC12):
The operational zero - error feedback capacity of a stationary

memoryless uncertain channel can be expressed in terms of

directed maximin information :

C, =lim sup iil*[X(k);Y(k)|Y(0:k—1)]=:1*[x —Y],

1= x (0:0),Y (0) T+ 1 %o

where

['[X:Y|Z]:= min logz‘T[X;le]‘

z€l[Z]]

1s conditional maximin information.
17



S
Thank You!
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