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Automatic Control over Noisy Channels

SAHAI AND MITTER: ANYTIME CAPACITY FOR STABILIZATION OVER A NOISY COMMUNICATION LINK—PART I 3371

Fig. 1. The “equivalence” between stabilization over noisy feedback channels
and reliable communication over noisy channels with feedback is the main result
established in this paper.

feedback” and the problem of reliable sequential communica-
tion with noiseless feedback (Fig. 1). In Section VI, these re-
sults are further extended to the continuous time setting. Finally,
Section VII justifies why the problem of stabilization of an un-
stable linear control system is “universal” in the same sense that
the Shannon formulation of reliable transmission of messages
over a noisy channel with (or without) feedback is universal.
This is done by introducing a hierarchy of communication prob-
lems in which problems at a given level are equivalent to each
other in terms of which channels are good enough to solve them.
Problems high in the hierarchy are fundamentally more chal-
lenging than the ones below them in terms of what they require
from the noisy channel.

In Part II, the necessity and sufficiency results are general-
ized to the case of multivariable control systems on an unstable
eigenvalue by eigenvalue basis. The role of anytime capacity is
played by a rate region corresponding to a vector of anytime re-
liabilities. If there is no explicit channel output feedback, the in-
trinsic delay of the control system’s input–output behavior plays
an important role. It shows that two systems with the same un-
stable eigenvalues can still have potentially different channel re-
quirements. These results establish that in interactive settings, a
single “application” can fundamentally require different senses
of reliability for its data streams. No single number can ade-
quately summarize the channel and any layered communication
architecture should allow applications to adjust reliabilities on
bitstreams.

There are many results in this paper. In order not to burden
the reader with repetitive details and unnecessarily lengthen this
paper, we have adopted a discursive style in some of the proofs.
The reader should not have any difficulty in filling in the omitted
details.

II. PROBLEM DEFINITION AND BASIC CHALLENGES

Section II-A formally introduces the control problem of
stabilizing an unstable scalar linear system driven by both
a control signal and a bounded disturbance. In Section II-B,
classical notions of capacity are reviewed along with how to sta-
bilize an unstable system with a finite rate noiseless channel. In
Section II-C, it is shown by example that the classical concepts
are inadequate when it comes to evaluating a noisy channel for
control purposes. Shannon’s regular capacity is too optimistic
and zero-error capacity is too pessimistic. Finally, Section II-D
shows that the core issue of interactivity is different than merely
requiring the encoders and decoders to be delay-free.

Fig. 2. Control over a noisy communication channel. The unstable scalar
system is persistently disturbed by W and must be kept stable in closed-loop
through the actions of O; C.

A. The Control Problem

(1)

where is a -valued state process. is a -valued
control process and is a bounded noise/disturbance
process s.t. . This bound is assumed to hold with
certainty. For convenience, we also assume a known initial
condition .

To make things interesting, consider so the open-loop
system is exponentially unstable. The distributed nature of the
problem (shown in Fig. 2) comes from having a noisy com-
munication channel in the feedback path. The observer/encoder
system observes and generates inputs to the channel.
It may or may not have access to the control signals or past
channel outputs as well. The decoder/controller9 system
observes channel outputs and generates control signals .
Both are allowed to have unbounded memory and to be
nonlinear in general.

Definition 2.1: A closed-loop dynamic system with state
is -stable if for all .

This definition requires the probability of a large state value
to be appropriately bounded. A looser sense of stability is given
by the following.

Definition 2.2: A closed-loop dynamic system with state
is -stable if there exists a constant s.t. for all

.
In both definitions, the bound is required to hold for all

possible sequences of bounded disturbances that satisfy
the given bound . We do not assume any specific proba-
bility model governing the disturbances. Rather than having to
specify a specific target for the tail probability , holding the

-moment within bounds is a way of keeping large deviations
rare. The larger is, the more strongly very large deviations
are penalized. The advantage of -stability is that it allows
constant factors to be ignored while making sharp asymptotic

9Because the decoder and controller are both on the same side of the commu-
nication channel, they can be lumped together into a single box.

Authorized licensed use limited to: University of South Australia. Downloaded on November 17, 2009 at 00:14 from IEEE Xplore.  Restrictions apply. 
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A. Sahai, “Anytime information theory,” Ph.D. dissertation, MIT, 2001.
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Model for Anytime Channel-Coded Transmission

Source

Binary
erasure
channel

Encoder

E(u1, ...,ut)

Decoder

D(ṽ1, ..., ṽt)

u1, ...,ut

û1, ..., ût

vt

ṽt

Encoding and Decoding

u[1,t] = [u1, u2..., ut ]

vt = E(u1, ..., ut)

û[1,t] = [û1, ..., ût ] = D(ṽ1, ..., ṽt)
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Anytime Reliability

Anytime Reliability

• The receiver can decide to start decoding at anytime

. . . . . . . . . 1 2 3 4 j - 1 j j +1 t - 1 t
d(t , j)

• Anytime reliability can formally be defined as

P(ûj 6= uj |u[1,t]was transmitted) ≤ β2−αd(t,j) (1)

• For a particular code at rate R, the largest α such that (1) is
fulfilled is referred to as the anytime exponent of the code
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Our Contributions

Anytime LDPC Convolutional Codes

• Modern coding structures have not yet been considered for anytime
transmission

• We propose:
• a tractable protograph structure for an LDPC-CC ensemble
• an expanding-window decoding scheme

• We show that the ensemble asymptotically exhibits the desired
anytime properties

• We show through simulation that the ensemble also exhibits some
anytime properties for finite-length codes
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LDPC Convolutional Codes

Background

• Invented in

A. J. Felström and K. Sh. Zigangirov, “Time-varying periodic convolutional codes with low-density
parity-check matrix,” IEEE Trans. on Inf. Theory, vol. 45, no. 6, pp. 2181–2191, Sept. 1999.

• Good performance has been analysed in
M. Lentmaier, A. Sridharan, D. J. Costello, and K. Sh. Zigangirov, “Iterative decoding threshold
analysis for LDPC convolutional codes,” IEEE Trans. on Inf. Theory, vol. 56, no. 10, pp. 5274 –
5289, Oct. 2010.

⇒ “For a terminated LDPCC code ensemble, the thresholds are better than for

corresponding regular and irregular LDPC block codes”

• Capacity achieving property has been proven in
S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via spatial coupling: Why convo-
lutional LDPC ensembles perform so well over the BEC,” IEEE Trans. on Inf. Theory, vol. 57, no. 2,
pp. 803 – 834, Feb. 2011.

⇒ “Spatial coupling of individual codes increases the belief-propagation (BP)

threshold of the new ensemble to its maximum possible value, namely the maximum

a posteriori (MAP) threshold of the underlying ensemble.”

• Implementation aspects
A. E. Pusane, A. J. Felström, A. Sridharan, M. Lentmaier, K. Sh. Zigangirov, and D. J. Costello,
“Implementation aspects of LDPC convolutional codes,” IEEE Trans. on Comm., vol. 56, no. 7, pp.
1060 – 1069, July 2008.
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LDPC Convolutional Codes

• A rate R = b/c LDPC convolutional code is defined as a set of
sequences v[0,L−1] = [v0, . . . , vL−1] that satisfy

0 = v[0,L−1]H
T
[0,L−1] = .

v[0,L−1]


HT

0 (0) . . . HT
ms

(ms )

HT
0 (1) . . . HT

ms
(ms + 1)

. . .
. . .

HT
0 (L− 1− ms ) . . . HT

ms
(L− 1)


︸ ︷︷ ︸

HT
[0,L−1]

where
• HT

[0,L−1]
(t) is the syndrome former matrix

(i.e., the transposed parity check matrix H[0,L−1]),

• HT
i (t) is a c × (c − b) binary matrix,

• HT
0 (t) must have full rank ∀t,

• L is the number of positions; length of the code: cL
• ms is the syndrome former memory.

• For LDPC-CCs the syndrome former matrix is sparse.

12 / 30



Anytime Reliability of
Systematic...
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LDPC Convolutional Codes

(J,K = κJ, L,M) regular LDPC convolutional code ensemble

• Syndrome former memory: ms = J − 1

• Submatrices
HT

i (t) = [P(1)
i (t), . . . ,P(κ)

i (t)]T ,

with M ×M permutation matrices Pj(t).

• Example: J = 3, κ = 2, K = 6, ms = 2

HT
[0,L] =



PT (1)
0 (0) PT (1)

1 (1) PT (1)
2 (2)

PT (2)
0 (0) PT (2)

1 (1) PT (2)
2 (2)

PT (1)
0 (1) PT (1)

1 (2) PT (1)
2 (3)

PT (2)
0 (1) PT (2)

1 (2) PT (2)
2 (3)

PT (1)
0 (2) PT (1)

1 (3) PT (1)
2 (4)

PT (2)
0 (2) PT (2)

1 (3) PT (2)
2 (4)

. . .


• Rate R = 1− J/K = 1− 1/κ (not considering rate loss due to

initialization and termination)
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Protograph Representation

(J,K = κJ, L,M) regular LDPC convolutional code ensemble

• Example: J = 3, κ = 2, K = 6, ms = 2

BT
[0,L] =


BT

0 (0) BT
1 (1) BT

2 (2)
BT

0 (1) BT
1 (2) BT

2 (3)
BT

0 (2) BT
1 (3) BT

2 (4)
. . .


where

BT
i (t) = [1, 1]T ,

• Each 1 element in the protograph is then “lifted” with an M ×M
randomized permutation matrices P(t).

14 / 30
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Protograph Representation

(J,K = κJ,M) regular LDPC convolutional code ensemble

• Protograph: J = 3, K = 6, ms = 2

• Observation: irregular check degrees at the boundaries; regular
variable node degrees.

• The good performance relies on this property!

• Decoding is done with iterative message-passing over the code
graph for terminated codes

• Sliding-window message-passing is possible for non-terminated codes
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Multi-Edge Density Evolution
• Densities have to be evaluated for each edge in the protograph

(similar to iterative decoding on the protograph).

• Variable nodes at position t are connected to check nodes at
positions t, . . . , t + ms

• Check nodes at position t are connected to check nodes at positions
t −ms , . . . , t

• Density evolution for the BEC case:
• Erasure probability for messages from variable nodes at position t to

check nodes at position t + j (i-th iteration):

p
(i)
t,t+j = ε

∏
k 6=j

q
(i)
t,t+k

• Erasure probability for messages from check nodes at position t to
variable nodes at position t − j (i-th iteration):

q
(i)
t,t−j = 1− (1− p

(i−1)
t−j,t )κ−1

∏
k 6=j

(1− p
(i−1)
t−k,t)

κ
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Convergence Behavior

• Convergence starts at the boundaries and propagates towards the
middle of the block.

t

p
(m)
t

p
(l)
t

p
(k)
t

t

t

• Positions at the boundaries benefit from the lower (locally irregular)
check-node degrees.

• After decoding a position at the boundary, the nodes can be
removed from the graph and the same irregular degree distribution
is reproduced at the new boundary.
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Anytime LDPC Convolutional Codes

Proposed Protograph Structure and Decoding Scheme

• Anytime linear code must have lower-left block-triangular structure

B[1,t] =



B0
B1 B0

.

.

. B1

. . .

.

.

.

.

.

.
. . .

Bt−1 Bt−2 . . . B1 B0

 .

• Expanding-window decoder

parity-check matrix H

received code sequence

v1 v2 v3

t = 1 t = 2 t = 3

time
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Example Ensemble for Consideration

Tractable Protograph Structure

• Ensemble of regular and systematic protographs of rate R = 1/2

B[1,t] =


1 1
1 0 1 1
1 0 1 0 1 1
...

...
...

...
...

...
. . .

1 0 1 0 1 0 . . . 1 1

 ,

• For ease of analysis we set B0 = [1 1] and Bi = [1 0] for i 6= 0

• The structure of the factor graph is as follows

. . .
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Asymptotic Analysis

P-EXIT Analysis

• Asymptotic erasure performance over time in the limit of
• infinite block size (M →∞), and
• infinite number of decoder iterations (k →∞)

• The recursive expression are

• C-to-V node: I k+1
Av,t(i , j) =

∏2i
s=1,s 6=j I

k
Ev,t(i , s)

• V-to-C node: I k+1
Ev,t (i , j) = 1− ε∏t

s=dj/2e,s 6=i (1− I k+1
Av,t(s, j))

• APP-LLR : IAPP,t(j) = 1− ε∏t
s=dj/2e(1− I∞Av (s, j))

. . .

G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” in

IEEE Global Telecom. Conf., Washington D. C., USA, Nov. 2007, pp. 3250–3254.
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Asymptotic Analysis

Main Result 1

For M →∞ and k →∞

PAPP,t(j) = PAPP,t(j + 2) ε

so performance curves a shifted versions of the same curve

Main Result 2

For M →∞, k →∞, increasing t and small j relative to t

PAPP,t+1(j) = PAPP,t(j) ε

leading to an anytime exponent of α = − log ε
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Asymptotic Analysis

Asymptotic Relationships Applied in the Proofs

I kAv,t(i + 1, j) ≤ I kAv,t(i , j)

I kEv,t(i , j + j ′) ≤ I kEv,t(i , j), for j , j + j ′ odd

I kEv,t(i , j) = 1− ε ∀k, for j even and j = 2t − 1

I∞Av,t(dj/2e, j) = 1− ε, for odd and small j relative to t

. . .
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Asymptotic Decoding Erasure Probability

• Erasure probability ε = 0.3

• Performance of decoding blocks over time

0 5 10 15
10−8

10−6

10−4

10−2

10 0

 

 

Time t

P
A
P
P

P 1
APP,[1,15]

P 2
APP,[1,15]

P 3
APP,[1,15]

P exp
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Asymptotic Decoding Erasure Probability

• Comparison to finite-length case of M = 20 over time

I. FINITE-LENGTH BEHAVIOR

The application of the anytime codes is desired for small
block lengths. However the asymptotic analysis is valid for
infinite blocklengths only. Therefore a deviation of the finite-
length behavior from the asymptotic ensemble performance
is expected. In this section several trials of analyzing the
finite-length behavior of expanding window LDPC-CCs are
presented. The main reasons why finite-length expanding win-
dow LDPC-CCs do not perform like their asymptotic versions
is that the Tanner graphs of finite-length codes can not be
assumed to be cycle free. Another issue is that for small blocks
the local erasure rate is not equal to the average erasure rate
of the channel (thelocal erasure rate refers to the fraction of
erasures in a particular single block of lengthM whereas the
average erasure rate is the fraction of erasures in an infinitely
long stream of blocks). For small block lengthsM the local
erasure rate might deviate significantly from the average era-
sure rate. Figure 1 depicts the probability of havingx erasures
in one block for different block lengthsM (resulting in a local
erasure rate ofx/M ) when the overall average erasure rate is
equal toǫ = 0.2. The larger the block length the more likely
it is to have a local erasure rate close to the average erasure
rate. The reason why it is important to investigate the finite-
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Fig. 1. Local erasure rate distribution for different blocklengthsM

length behavior in detail is that unlike for conventional LDPC
codes etc. for the expanding window code the finite-length
performance can differ completely from the asymptotic-length
performance. This behavior is called catastrophic behavior in
the following. A ”catastrophe” happens if transmitting coded
bits is as bad as transmitting uncoded bits.

In the following sections we will focus on the code structure
defined by the protographB0 = [1 1], Bi = [1 0] that is




1 1
1 0 1 1
1 0 1 0 1 1
1 0 1 0 1 0 1 1
...

...
...

. . .
. . .




(1)

Fig. 2 shows the average decoding performance for the code
corresponding to the protograph described above. As can be
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Fig. 2. Average decoding performance of the protograph defined by B0 =
[1 1], Bi = [1 0] for M = 8 on a BEC withǫ = 0.3. Catastrophic behavior
obvious by the increase of the error floor over time.
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Fig. 3. Average decoding performance of the code defined by theprotograph
base matrix withB0 = [1 1], Bi = [1 0] for M = 20 on a BEC with
ǫ = 0.3. No catastrophic behavior can be observed over this time interval.

seen in contrast to the asymptotic performance at some point
in time the decoding erasure probability stops decreasing.This
happens for all blocks. Plotting the average behavior over
a larger time interval would show that the average lowest
possible decoding erasure probability is increasing over time
and would eventually reach the level of the erasure rate (not
shown in this plot). This behavior differs significantly from
the asymptotic behavior. However note that for largerM (but
still quite small) the code shows a very good performance
on the firstL = 20 time steps. This can be seen from Fig.
3. Here the average decoding performance is shown for the
same protograph but with a lift factor ofM = 20. Moreover
it can be seen that the simulated average decoding performance
follows almost exactly the asymptotic code performance ob-
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Fig. 4. Average decoding performance of the code defined by theprotograph
base matrix withB1 = [1 1], Bi = [1 0] for different M on a BEC with
ǫ = 0.3. With increasingM the asymptotic performance is approached.

tained by P-EXIT analysis in the interval shown. (Note that
108 Monte Carlo simulations are performed, the values at
10−7 are therefore still not very reliable.) The decoding
failure probability decays exponentially. Fig. 4 comparesthe
performance of one particular block for different lift factors
with the asymptotic performance obtained by P-EXIT analysis.
As can be seen with increasing lift factor the asymptotic
performance is approached. However in order to determine
whether catastrophic behavior might appear even for the case
where M = 20 the average decoding performance has to
be simulated over infinitely many time stepsL, which is
not feasible. This means it is not clear from the simulations
whether or not the curve in Fig. 4 corresponding toM = 20
stops following the asymptotic curve at a lowerPe. Therefore
it is necessary to investigate the performance analytically. The
goal is to find an analytical expression or an upper+lower
bound with which it is possible to estimate the probability
of catastrophe. Knowing the probability of catastrophe is
useful in practical applications where codes that might show
catastrophic behavior can still be a good choice if we allow
for an emergency feedback link. Since the decoder knows
when catastrophic behavior is about to appear it can inform
the encoder via the feedback link and the encoder can modify
the encoding process. If the probability of catastrophe is small
this emergency feedback link would almost never be used.

A. Catastrophic Behavior

The behavior of a LDPC-CC code is called catastrophic if
the code looses (with high probability) all its error protection
capabilities starting from one point in time. This means that
from that point in time onwards it is very very unlikely to
reveal an erased bit. Since we are interested in streaming
applications this behavior should absolutely be avoided.

A good definition of catastrophic behavior is still to be
determined....
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Fig. 5. ProbabilityPc of revealing an erasure over time forǫ = 0.3,
M = 4, 8, 20. Each curve corresponds to one simulation run. PerM there are
200 simulation runs shown. The asymptote is a curve decaying exponentially
with (1− ǫ).

Definition: The behavior of a a LDPC-CC code is called
catastrophic if the probability of uncovering an erased bitb in
block Bi at time t = i+ d is approaching zero exponentially
fast with delayd. (We are trapped in a maximum stopping set
which size increases linearly over time.)

That is, assume that the decoder was not able to decode
any erasures fori+ T time steps, whereT is large. Then the
probabilityPc that a check equation contains only one single
erasure and therefore can determine its value is on average
equal toPc(T ) = ǫ(1 − ǫ)T since among theT not entirely
known blocks there need to beT connections to known nodes
and one connection to an unknown node. It can be seen that
the probability of revealing an erased node decreases expo-
nentially with T . This exponential decay of the probability
of revealing an erasure depends on the erasure rateǫ but is
independent of the sizeM of the blocks as long asT is large
enough.However the probability of ending up in a situation
where no erasures were revealed forT time steps depends
on M . That is the initial behavior is of great importance..
Fig. 5 shows the exponential decay of the probabilityPc of
revealing an erasure for the considered protograph with lift
factorsM = 4, 8, 20 and ǫ = 0.3. Each curve corresponds
to one simulation of an expanding window scheme over time.
The probabilityPc is calculated in every expansion step by the
decoder as follows:Pc(t) = ǫt(t)

∏t−1
i=1(1− ǫi(t)) whereǫi(t)

denotes the local erasure rate in information blocki at time
t. As can be seen the probability of revealing an erasure is
above a certain ”threshold” for most of the simulations. The
”threshold” depends onM : A lower threshold corresponds
to a smallerM . Additionally we see that forM = 4 and
M = 8 in a few casesPc(t) goes beyond the threshold
and decreases exponentially fast (compare to asymptote). This
figure is further discussed in Sec.III-D.

The appearance of catastrophic behavior depends on the
code structure, the occurrence of specific erasure patternsand
the erasure rate of the channel.

A simple example for when catastrophic behavior appears

28 / 30



Anytime Reliability of
Systematic...
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Summary

• Investigated a particular ensemble of anytime LDPC convolutional
codes

• Showed that anytime reliability is asymptotically achieved as block
length and number of iterations grow large

• Compared favorably with finite-length simulation results

Concluding Remarks

• A regular systematic anytime LDPC CC achieves anytime reliability

• Block length does not need to grow large to achieve anytime
reliability

• Irregular systematic anytime LDPC CCs have potential for better
performance

• We are currently developing analysis techniques for finite-length
anytime LDPC CCs
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