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Camera networks for motion capture

&)

¥ Reconstruction of the 3D motion from the tracking of markers done by a set of
cameras which need to be calibrated

% High precision calibration is required




Camera networks for motion capture

The required high precision and the coverage of a large space require a large number of
cameras. 1o reduce the number of cameras it Is convenient to use mobile cameras.
Mobile cameras need real-time calibration.
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2\ Camera networks for video surveillance

¥ A group of cameras used for perceiving some
environment for surveillance purpose

¥ Low precision calibration is required
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% Calibration of camera networks
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Camera
field of view

Simplified 2D modeling




‘:;5% Calibration of camera networks

camera v camera u




Calibration of camera networks

@® Moving markers to be tracked

B Fixed reference markers for the
calibration

camera v camera u




camera v

camera u
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Calibration of camera networks

camera v camera u
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Calibration of camera networks

g,, 8, absolute positions
g, >~ g, — g, relative position

Tluv Estimate absolute positions
from relative positions

gv guv gu
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Calibration of camera networks

6,, 0, absolute orientations
Nuy = 9_,, — év relative orientation

Tluv Estimate absolute orientations
from relative orientations

gv guv gu
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Calibration of camera networks

0y, 0y, Nuy € SO(2)

In coordinate SO(2) ~| — m, 7]

hov X +s002) Yy = (X +¥)2r

where (x), = x mod 27

gv guv gu
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A directed graph G = (V,&) is given, £ C V x V. The matrix A is the
incidence matrix of the graph G
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A directed graph G = (V,&) is given, £ C V x V. The matrix A is the
incidence matrix of the graph G

Ac{—1,0,1}&xY

edge e
o— 0 A — | — | edge e
nhode u node v

nodeu nodev
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MI\/Iodehng of the angular calibration

A directed graph G = (V,&) is given, £ C V x V. The matrix A is the
incidence matrix of the graph G

With each node i € V we associate the unknown angle

Hi < [_7-‘-77‘-)

—aY
Y
.
Z.

sl

M
R
B
o

<

17



LS > ,/7.

1'1 J\ 4 . SAN A :5
N \ -\ 1\ \’- -
NEER R IRYARN At -
. . \ A\ | \\‘ ',\,‘{ it "-
. . \ |l' \. Y 4

] 4 .
!

s Ao A / N
.. ' § :..._ J 3%

A\ Y

)

\Modaeling of the angular calibration
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A directed graph G = (V,&) is given, £ C V x V. The matrix A is the
incidence matrix of the graph G

With each node i € V we associate the unknown angle

0,’ S [_7-‘-77-‘-) é — [(9|7° . 7éN]T S [—7‘('77'(')\/

With each edge {i,j} € £ we associate the noisy relative measurement

77ij:(9_i—§j—5ij)2w€[—7ﬂﬁ) UZ[UU]E[—WJ)M
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-----

A directed graph G = (V,&) is given, £ C V x V. The matrix A is the
incidence matrix of the graph G

With each node i € V we associate the unknown angle

0 € [—m, ) 0=10,...,00"€[-mmn)

With each edge {i,j} € £ we associate the noisy relative measurement

Nij = (6’_, — 6_)] — 6;,')277 c [—71', 7T) n—= [7711] c [—7T, 7T)M
Notation: \
(X)27T — X mOd 27T o
Gy (X) = 5" > x= (X)2r + 271Gy, (x)
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@\l 2Modeling of the angular calibration

——
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A directed graph G = (V,&) is given, £ C V x V. The matrix A is the
incidence matrix of the graph G

With each node i € V we associate the unknown angle

0 € [—m, ) 0=10,...,00"€[-mmn)

With each edge {i,j} € £ we associate the noisy relative measurement

Nij = (6’_, — 6_)] — 6;,')277 c [—71', 7T) n—= [77'1] c [—7T, 7T)M
Notation: \
(X)27T — X mOd 27T o
Gy (X) = 5" > x= (X)2r + 271Gy, (x)
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Assumption: With no loss of generality we can assume that §;, = 0.

21



.") P

\
:‘*-

15

\..\ \\

e /);

;«I\/Iodehng of the angular calibration

Assumption: With no loss of generality we can assume that §;, = 0.

Problem: compute an estimate 8 € [, 7)Y of the vector of angles 8 on
the basis of the relative measurements 7

22
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A\ Modeling of the angular calibration

Assumption: With no loss of generality we can assume that §;, = 0.

Problem: compute an estimate 8 € [, 7)Y of the vector of angles 8 on
the basis of the relative measurements 7

Possible solution: minimize the cost function on [—m, m)N

V(6) := I[(A0 — m)ar || = min [[A6 —n — 27K ||?
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A Modeling of the angular calibration
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Assumption: With no loss of generality we can assume that §;, = 0.

Problem: compute an estimate 8 € [, 7)Y of the vector of angles 8 on
the basis of the relative measurements 7

Possible solution: minimize the cost function on [—m, m)N

V(6) := I[(A0 — m)ar || = min [[A6 —n — 27K ||?

Fact: V(0) has several local minima due to the geometry of the circle
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Example: 3 cameras with 0, =0, = 0y

Noiseless case so that nj, =13 =13 =0

= 0 and a circular graph ¢
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Assumption: 0, = 0 so that V(0) = V(6,,03) for 0,,03 € (—=, 7).

0,00 4
-
SN |
\ ‘\
. o
\ . 61(0)
S
/ .
/
/
) @
03(0)
Contour lines of V(0) = V(6,, 63) Local minimum
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Prior Work

Estimation of the position of the agents with a partial knowledge of their relative
position.

Setting: 0 c R
An = A0 + ¢

The proposed estimation 0 is the minimizer of the quadratic cost
V(6) := [|A6 — n’

- A distributed consensus type estimator is proposed.
- The performance is related to the effective resistance of the graph.

P. Barooah, |. Hespahna, "Estimation on Graphs from relative Measurements: Distributed Algorithms
and Fundamental Limits", IEEE Control Systems Magazine, vol. 27, 2007.

S. Bolognani, S. Del Favero, L. Schenato, D. Varagnolo. "Consensus-based distributed sensor cal-

ibration and least-square parameter identification in WSNs", International Journal of Robust and
Nonlinear Control, vol. 20, 2010.
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Prior Work

Consensus over lie groups and manifolds:
A. Sarlette, S. Bonnabel and R. Sepulchre, S Bonnabel
R. Tron, B. Afsari, R. Vidal, A Terzis

Y. Igarashi, T. Hatanaka, M. Fujita, M.WV. Spong

Distributed algorithms for angular calibration:

G. Piovan, |. Shames, B. Fidan, F. Bullo, and B. D. O. Anderson. "On Frame and Orri-
entation Localization for Relative Sensing Networks". Automatica, February 201 1.

Optimization over manifolds:

R. Sepulchre, "Optimization over matrix manifolds", Princeton University Press, 2008.
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Proposed solution: Observe that

0 = argmin || (A6 — 1) ||?
OcRYezZE

and o
(0,K) := argmin ||A0 —n — 27K||?
OcRV . Kez€

give the same answer 6.
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il Proposed solution

Proposed solution: Observe that

0 = argmin || (A6 — n)2.|?
OcRYezZE

and o
(0,K) := argmin ||A0 —n — 27K||?
OcRV . Kez€

give the same answer 6.

From K it is easy to determine 6 using standard quadratic optimization formulas

A

6 = (ATA)PAT(n + 27K)

where (A'A)% is a pseudo inverse of A'A.

30



Proposed solution

.

Proposed solution: Observe that

0 = argmin || (A6 — n)2.|?
OcRYezZE

and o
(0,K) := argmin ||A0 —n — 27K||?
OcRV.KezZE€

give the same answer 6.

From K it is easy to determine 6 using standard quadratic optimization formulas

A

6 = (ATA)PAT(n + 27K)
where (A'A)% is a pseudo inverse of A'A.

Notice that there are standard distributed algorithms for determining 6.

31



- e L\ N
< ) O “ : \‘\ \\' /-} ) .
" ..“’: - \ M > ?

-

‘vv ‘\' -"l‘ \ -
14 4 ™) “\ L
: W
&& )

Ay

\ _A

NN Proposed solution
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For fixed K let

0(K) := argmin|/(A0 — n — 27K||* = (ATA)FAT (n + 27K)

OcRY
and let )
f(K) := [|(A6 — n — 27K]|?
so that A
K = argmin f(K)

Kez¢
It can be shown that

fK) = (n — 2nK)" (I — A(ATA)*AT) (1) — 27K)

It is difficult to obtain

K = argmin f(K)
KeZ¢®
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With any closed path (cycle) v on the graph G we can associate a column

R, € 7€ such that
> =R

{ijyey

Notice that
RIA=0
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With any closed path (cycle) v on the graph G we can associate a column

R, € 7€ such that
> i =Rim
{ijyevy
Notice that
RIA=0

Let R be a matrix having columns R, as «y varies in a "base" of cycles of the
graph G.
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Proposed solution

With any closed path (cycle) v on the graph G we can associate a column
R, € 7¢ such that

Notice that

Let R be a matrix having columns R, as «y varies in a "base" of cycles of the
graph G.

It can be shown that

f(K) = [|(R'R)~"/?R (17 — 2K |2
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Proposed solution

From this we can argue that

|
Omax (R)

|R"(n — 27K)||* < flK) <

R'(n — 27K)||?
_Umm(R)H (m — 27K)||
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Tl Proposed solution
A\ 4 ,i\ = ";\:",'—"‘1 |

\.' \ ‘-? o =M .::2

From this we can argue that

R — 20K < fIK) < —

Umax(R) — Umin(R) HR (77 o 27TK)H

If 0min(R) =2 0max(R) then

K ~ argmin |R"(n — 27K)||3

KeZ¢
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| ; Proposed solution
- Frélf th‘is v:/e can argue that
i IR = 2K < 1K) < s R = 27K
If 0min(R) =2 omax(R) then

K ~ argmin ||RT(n — 27K)||?

KeZ¢

This can be found easily

argmin ||R"(n — 27K)||> = Xq,, (R™n)
KeZ<¢

where X is a matrix with entries in Z such that R"X = I.
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ANk Example
Consider the cycle graph. For this the incidence matrix is
1 -1 0 0 0 |
0 |l —I 0 0
0O O | —I 0
A=l 0 0 0 | 0

—1 0 0 o .- |

and
R=[111---11

In this case, since omin(R) = omax(R) = VN, then

K = argmin | Zne — ZWZKeHZ = Xq,,. (Z Ue)

KeZ¢

where X is a left inverse of R" = [1 | | --- | 1].




i Questions to be answereo

* Is it possible to find a distributed algorithm for determining this estimate
K?

— Yes, but it depends on the choice of the "basis" of cycles we make.

* Is it possible to make an error analysis of the algorithm based on a given
statistical description of the noise!

— Only partially so far. VWe could not obtain a good statistical descrip-
tion of the error in the estimation K of K. We know the behavior
of

E(16 - 6]| | K =K)

but not of

E(I6 —6]) = > E(|6—0| | K=K+K)P(K=K+K)

40
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Families of cycles for which the algorithm can be implemented in a distributed
way start from spanning tree of the graph.
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“\\ \§ < row to distribute the algorithm
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Fundamental cycles: easier to distribute but with bigger reconstruction
error.
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ﬁ'f;?‘::{\:xi\?'i\.\ w2 How to distribute the algorithm

Fundamental cycles: easier to distribute but with bigger reconstruction
error.
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ﬁ'f;?‘::{\:xi\?'i\.\ w2 How to distribute the algorithm

Fundamental cycles: easier to distribute but with bigger reconstruction
error.
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ﬁ'f;?‘::{\:xi\?'i\.\ w2 How to distribute the algorithm

Fundamental cycles: easier to distribute but with bigger reconstruction
error.
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Minimal cycles: harder to distribute but with smaller reconstruction error.
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“\\ \§ < row to distribute the algorithm
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Minimal cycles: harder to distribute but with smaller reconstruction error.
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ﬁ'f;?‘::{\:xi\?'i\.\ w2 How to distribute the algorithm

Minimal cycles: harder to distribute but with smaller reconstruction error.
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ﬁ'f;?‘::{\:xi\?'i\.\ w2 How to distribute the algorithm

Minimal cycles: harder to distribute but with smaller reconstruction error.

/ /
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“UN=  Simulation results on the 2D grid

—(O—0O——C0O—0

Estimation error

o

W= %1(8 — )]’

Error on the estimate of the orientations
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the algorithm has stronger resilience w.r.t. . .
9 100 225 400

the measurement noise

Dimension of the graph - number of agents
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Open ISSUeSs

From the algorithmic point of view:

A better estimation algorithm for the vector of integers K.

A more distributed algorithms (asynchronous gossip type).

From the performance analysis point of view:

Obtain estimates of the probability of error in the estimation of K.

The time varying case in which the orientations vary in time (mobile
cameras).

Bayesian apporach in which there is an apriori knowledge that can be
used.
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Questions?

52



