Background	Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000

Formation control of multiagent systems with size scaling

Sam Coogan

Electrical Engineering and Computer Sciences University of California, Berkeley

Advisor: Murat Arcak

October 12, 2012

Background	Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Outline				

- Problem Setup
- 3 Multiple Link Method
- 4 Single Link Method

oduction

Problem Se

Multiple Link Method

Single Link Method

Examples 000000000

Consensus in Multiagent Systems

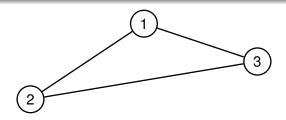
- Consensus problems are a class of distributed coordination problems in which agents agree on a variable of interest
- Consensus problems include rendezvous, flocking, sensor agreement, attitude alignment of satellites, synchronization of coupled oscillators, formation control (shifted rendezvous), etc.

tion Pro

Problem Setup

Multiple Link Method

Single Link Method


Examples 00000000

Consensus Algorithm

- Let G = (V, E) be an undirected graph with n nodes indexed 1 to n and m edges
- Let *x_i* be the state of the *i*-th node
- Let \mathcal{N}_i be the neighborhood of node i

Single Integrator Consensus Algorithm

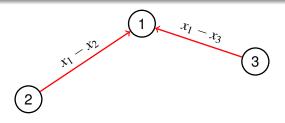
$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} (x_i - x_j)$$

tion Pro

Problem Setup

Multiple Link Method

Single Link Method


Examples 00000000

Consensus Algorithm

- Let G = (V, E) be an undirected graph with n nodes indexed 1 to n and m edges
- Let *x_i* be the state of the *i*-th node
- Let \mathcal{N}_i be the neighborhood of node i

Single Integrator Consensus Algorithm

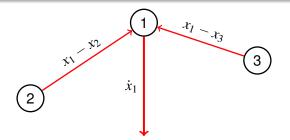
$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} (x_i - x_j)$$

ction P

Problem Setup

Multiple Link Method

Single Link Method


Examples 00000000

Consensus Algorithm

- Let G = (V, E) be an undirected graph with n nodes indexed 1 to n and m edges
- Let *x_i* be the state of the *i*-th node
- Let \mathcal{N}_i be the neighborhood of node i

Single Integrator Consensus Algorithm

$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} (x_i - x_j)$$

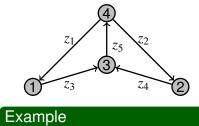
oduction

Problem Se

Multiple Link Metho

Single Link Method

Examples 000000000


A Simple Rendezvous Algorithm

Background 000●0000		Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Incidon	oo Matri	v			

- Arbitrarily assign a direction to each edge
- $n \times m$ incidence matrix D:

$$d_{ij} = egin{cases} +1 & i ext{ is head of edge } j \ -1 & i ext{ is tail of edge } j \end{cases}$$

- $\lambda_2(DD^T) > 0$ iff \mathcal{G} is connected
- λ₂ is known as the Fiedler value, or the algebraic connectivity of *G*

	[1]	0	-1	0	$\begin{bmatrix} 0\\0\\-1\\1\end{bmatrix}$	
ת –	0	1	0	-1	0	
D =	0	0	1	1	-1	
	$\lfloor -1 \rfloor$	-1	0	0	1	

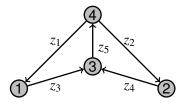
uction

Problem Setup

Multiple Link Method

Single Link Method

Examples 00000000


Consensus with Incidence Matrix

If x_i ∈ ℝ^p, x is stacked vector, we have

$$\dot{x} = -(DD^T \otimes I_p)x$$

= $-(D \otimes I_p)z$

where $z = (D^T \otimes I_p)x$

 z is a stacked vector corresponding to the edges (as vectors) in the graph

•
$$z_1 = x_1 - x_4$$
, etc.

$$\blacktriangleright z = \begin{bmatrix} z_1^T & \dots & z_5^T \end{bmatrix}^T$$

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

 Background
 Introduction
 Problem Setup
 Multiple Link Method
 Single Link Method
 Examples

 Simple Formation Control
 Single Link Method
 Single Link Method
 Single Link Method
 Examples

• Let z_i^d be the desired value for each z_i and let

$$z^d = \begin{bmatrix} (z_1^d)^T & \dots & (z_m^d)^T \end{bmatrix}^T$$

Run consensus with difference variables, i.e.

$$\dot{x} = -(D \otimes I_p)\tilde{z}$$

where $\tilde{z} = z - z^d$

Background Introduction Problem S

Multiple Link Method

Single Link Method

Examples 000000000

Double Integrator Consensus

For fully actuated double integrators, let

$$\ddot{x}_i = -\sum_{j \in \mathcal{N}_i} (x_i - x_j) - k v_i$$

where k > 0, $v_i \triangleq \dot{x}_i$.

This also solves a consensus problem. Let

$$V = \frac{1}{2}(v^T v + x^T D D^T x).$$

Then

$$\dot{V} = -v^T K v - v^T D D^T x + x^T D D^T v$$
$$= -v^T K v \le 0.$$

Apply LaSalle's principle and conclude that $\lim_{t\to\infty} x = \alpha \mathbf{1}$.

duction

Problem Setup

Multiple Link Method

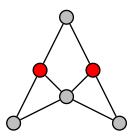
Single Link Method

Examples 000000000

Consensus Extensions

- Weighted graph Laplacians
- Directed networks
- Discrete time consensus
- Switched communication topologies

Introduction


Multiple Link Method

Formation Control Problem

Problem Statement

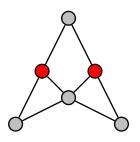
•0

- Team of agents with known desired formation shape
- Leader agents know desired formation scale
- Goal: all agents move to the scaled desired formation with no communication (just relative position sensing)

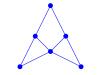
Introduction

Multiple Link Method

Formation Control Problem


Problem Statement

00


- Team of agents with known desired formation shape
- Leader agents know desired formation scale
- Goal: all agents move to the scaled desired formation with no communication (just relative position sensing)

Technical Setup

- ▶ *n* agents, each has position $x_i \in \mathbb{R}^p$
- **•** Double integrators, i.e. $\ddot{x}_i = f_i$
- Position sensing graph with incidence matrix D

Background	Introduction	Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000

Formation Shape

Background		Problem Setup ●○	Multiple Link Method	Single Link Method	Examples 000000000
Probler	n Setup				

- Let z_j for j = 1, ..., m be the relative position along edge j
- We have relation

$$z = (D^T \otimes I_p)x$$

where *x* and *z* are stacked vectors, and let $v = \dot{x}$

- For each edge, there is a corresponding prescribed z_i^d
- A desired formation scale $\lambda \in \mathbb{R}$ is known to leaders

Cooperative Control Problem

Formation converges to the scaled desired formation, i.e.

$$\lim_{t\to\infty} z_j = \lambda z_j^d \qquad \text{for all } j.$$

Background	Problem Setup	Multiple Link Method	Single Link Method	Examples
	00			000000000

• A standard formation control approach:

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \lambda \right) - k v_i$$

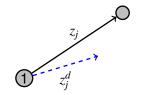
Background	Problem Setup ○●	Multiple Link Method	Single Link Method	Examples 000000000

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \lambda \right) - k v_i$$

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples
0000000	00	00	0000000	0000000	000000000

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \lambda \right) - k v_i$$

Multiple Link Method:


$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \underbrace{(z_{j}^{d})^{T} z_{j} \frac{1}{||z_{j}^{d}||^{2}}}_{\text{estimate of } \lambda} \right) - kv_{i}$$

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples
00000000	00	00	0000000	0000000	000000000

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \lambda \right) - k v_i$$

Multiple Link Method:

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \underbrace{(z_{j}^{d})^{T} z_{j} \frac{1}{||z_{j}^{d}||^{2}}}_{\text{estimate of } \lambda} \right) - kv_{i}$$

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples
0000000	00	00	0000000	0000000	000000000

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \lambda \right) - k v_i$$

Multiple Link Method:

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \underbrace{(z_{j}^{d})^{T} z_{j} \frac{1}{||z_{j}^{d}||^{2}}}_{\text{estimate of } \lambda} \right) - kv_{i}$$

Single Link Method: Agent i monitors an assigned link z_i

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \underbrace{(z_{i}^{d})^{T} z_{i} \frac{1}{\left| \left| z_{i}^{d} \right| \right|^{2}}}_{\text{estimate of } \lambda} \right) - kv_{i}$$

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples
0000000	00	00	•0000000	0000000	000000000

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \lambda \right) - k v_i$$

Multiple Link Method:

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \underbrace{(z_{j}^{d})^{T} z_{j} \frac{1}{||z_{j}^{d}||^{2}}}_{\text{estimate of } \lambda} \right) - kv_{i}$$

Single Link Method: Agent i monitors an assigned link z_i

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} (z_{i}^{d})^{T} z_{i} \frac{1}{\left| |z_{i}^{d}| \right|^{2}} \right) - kv_{i}$$
estimate of \$\lambda\$

Multiple Link Method

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - \frac{1}{||z_j^d||^2} z_j^d (z_j^d)^T z_j \right) - k v_i$$

Let

$$P_{j} = \frac{1}{||z_{j}^{d}||^{2}} z_{j}^{d} (z_{j}^{d})^{T},$$

the projection matrix onto $S_i := \operatorname{span}\{z_i^d\} \subset \mathbb{R}^p$

• Let $Q_j = I_p - P_j,$ the projection onto $S_j^{\perp} \subset \mathbb{R}^p$

Matrix Form

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij}Q_j z_j - k v_i$$

Background Introduction Problem Setup Multiple Link Method Single Link Method

Multiple Link Method

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - \frac{1}{||z_j^d||^2} z_j^d (z_j^d)^T z_j \right) - k v_i$$

Let

$$P_{j} = \frac{1}{||z_{j}^{d}||^{2}} z_{j}^{d} (z_{j}^{d})^{T},$$

the projection matrix onto $S_j := \operatorname{span}\{z_j^d\} \subset \mathbb{R}^p$

• Let $Q_j = I_p - P_j,$ the projection onto $S_j^{\perp} \subset \mathbb{R}^p$

- $P = \mathsf{BlockDiag}\{P_1, \ldots, P_m\}$
- $Q = \mathsf{BlockDiag}\{Q_1, \ldots, Q_m\}$

•
$$S \triangleq \prod_{j=1}^m S_j \subset \mathbb{R}^{mp}$$

P projects onto S

Matrix Form

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij}Q_jz_j - kv_i$$
$$\ddot{x}_f = -(D_f \otimes I_p)Qz - kv_f$$

Background Introduction Problem Setup of Setup o

Stability with No Leaders

Lemma

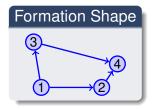
If there are no leaders, the control strategy

$$\ddot{x} = \dot{v} = -(D \otimes I_p)Qz - kv$$

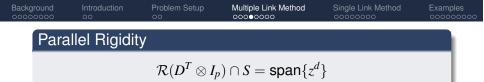
converges to a scaling of the desired formation z^d iff

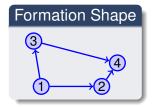
$$\mathcal{R}(D^T \otimes I_p) \cap S = span\{z^d\}.$$

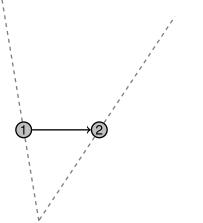
Proof:

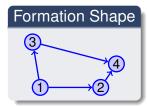

- Let $V := \frac{1}{2}(v^Tv + z^TQz)$ be a Lyapunov function
- Apply Lyapunov theory and LaSalle's Invariance Principle

Control strategy ensures every edge z_i lies in the direction of z_i^d .

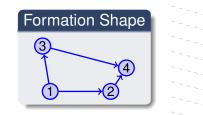


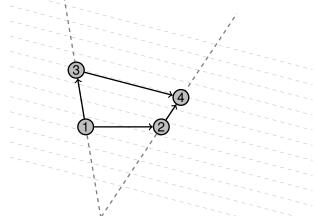

- B. Servatius & W. Whiteley. (1999). "Constraining plane configurations in CAD: Combinatorics of lengths and directions". *SIAM Journal on Discrete Mathematics*, 12, pp. 136–153.
- T. Eren et al. (2004). "Operations on Rigid Formations of Autonomous Agents". *Communications in Information and Systems*, pp. 223–258.
- T. Eren. (2007). "Using Angle of Arrival (Bearing) Information for Localization in Robot Networks". *Turkish Journal of Electrical Engineering & Computer Sciences*, 15, pp. 169–186.

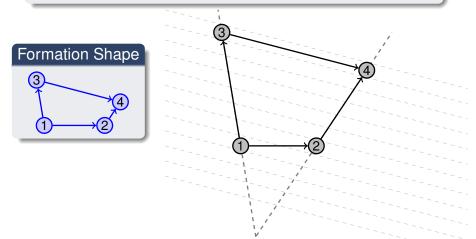


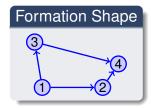


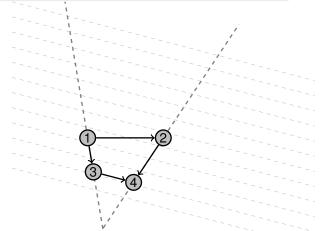



$$\mathcal{R}(D^T \otimes I_p) \cap S = \operatorname{span}\{z^d\}$$




$$\mathcal{R}(D^T \otimes I_p) \cap S = \operatorname{span}\{z^d\}$$




$$\mathcal{R}(D^T \otimes I_p) \cap S = \operatorname{span}\{z^d\}$$

$$\mathcal{R}(D^T \otimes I_p) \cap S = \operatorname{span}\{z^d\}$$

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Parallel Rigid					

Formation Shape

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Parallel Rigid					

Formation Shape

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Leader	S				

Introducing leaders:

- Reduces stable subspace to the desired scaling for parallel rigid formations
- Can result in desired scaling even if not parallel rigid

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Leaders	S				

Introducing leaders:

- Reduces stable subspace to the desired scaling for parallel rigid formations
- Can result in desired scaling even if not parallel rigid

Formation Shape

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Leaders	S				

Introducing leaders:

- Reduces stable subspace to the desired scaling for parallel rigid formations
- Can result in desired scaling even if not parallel rigid

But

Can result in instability

Background		Problem Setup	Multiple Link Method ○○○○○○●	Single Link Method	Examples 000000000
Stability	v				

Theorem

With at least one leader, the Multiple Link Method achieves the desired group behavior for sufficiently large k if and only if the subspace $\mathcal{R}(\mathbf{1}^T \otimes I_p)$ of the auxiliary system

$$\dot{\xi} = -D_Q(D^T \otimes I_p)\xi$$

is asymptotically stable

where

$$\begin{bmatrix} D_f \\ D_l \end{bmatrix} := D$$

and

$$D_{\mathcal{Q}} = egin{bmatrix} (D_f \otimes I_p) \mathcal{Q} \ (D_l \otimes I_p) \end{bmatrix}.$$

Background		Problem Setup	Multiple Link Method	Single Link Method	
00000000	00	00	0000000	●0000000	00

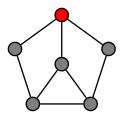
Leader control strategy:

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \lambda \right) - k v_i$$

 Multiple Link Method: Every link is used for formation update

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \underbrace{\frac{(z_{j}^{d})^{T}}{||z_{j}^{d}||^{2}} z_{j}}_{\text{estimate of } \lambda} \right) - kv_{i}$$

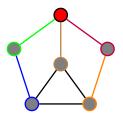
Single Link Method: Each agent *i* monitors link z_i


$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \underbrace{\frac{(z_{i}^{d})^{T}}{\bigcup |z_{i}^{d}||^{2}} z_{i}}_{\text{estimate of } \lambda} \right) - kv_{i}$$

Link Monitoring

$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \left| \left| z_i^d \right| \right|^{-2} (z_i^d)^T z_i \right) - k v_i$$

 Starting from the leader and branching out, assign to each other agent a monitoring link



Link Monitoring

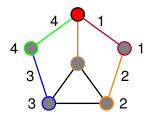
$$\ddot{x}_i = -\sum_{j=1}^m d_{ij} \left(z_j - z_j^d \left| \left| z_i^d \right| \right|^{-2} (z_i^d)^T z_i \right) - k v_i$$


 Starting from the leader and branching out, assign to each other agent a monitoring link

Link Monitoring

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \left| \left| z_{i}^{d} \right| \right|^{-2} (z_{i}^{d})^{T} z_{i} \right) - k v_{i}$$

 Starting from the leader and branching out, assign to each other agent a monitoring link



 Number edges so that monitoring link index matches node index

Link Monitoring

$$\ddot{x}_{i} = -\sum_{j=1}^{m} d_{ij} \left(z_{j} - z_{j}^{d} \left| \left| z_{i}^{d} \right| \right|^{-2} (z_{i}^{d})^{T} z_{i} \right) - k v_{i}$$

 Starting from the leader and branching out, assign to each other agent a monitoring link

 Number edges so that monitoring link index matches node index

$$\Delta = \begin{bmatrix} \sum_{j=1}^{m} d_{1j} z_j^d \frac{(z_1^d)^T}{||z_1^d||^2} & 0 \\ & \ddots & \\ 0 & \sum_{j=1}^{m} d_{n_f j} z_j^d \frac{(z_j^d)^T}{||z_j^d||^2} \end{bmatrix}$$

Matrix Form
$$\dot{v} = -kv - (D \otimes I_p)\tilde{z} + \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix} \tilde{z}$$
$$\dot{\tilde{z}} = (D^T \otimes I_p)v$$

where $\tilde{z} = z - \lambda z^d$

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples
0000000	00	00	0000000	0000000	000000000

System Dynamics

$$\dot{v} = -kv - (D \otimes I_p)\tilde{z} + \begin{bmatrix} \Delta & 0\\ 0 & 0 \end{bmatrix}\tilde{z}$$
$$\dot{\tilde{z}} = (D^T \otimes I_p)v$$

Background		Problem Setup	Multiple Link Method	Single Link Method ○○○●○○○○	Examples 000000000
Stability	/ Analysi	is			

The small gain theorem results in an easy-to-check sufficient geometric criterion for stability

Small Gain Theorem

Let γ_1 be the \mathcal{L}_2 gain of the (v, \tilde{z}) subsystem and let γ_2 be the \mathcal{L}_2 gain of the Δ subsystem. If

 $\gamma_1\gamma_2 < 1$

then the interconnected system is stable.

Gains γ_1 and γ_2 have a nice geometric interpretation

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples 000000000
Stability	/ Analysi	S			

$$\begin{array}{c} u \\ \hline \dot{v} = -kv - (D \otimes I_p)\tilde{z} + u \\ \dot{\tilde{z}} = (D^T \otimes I_p)v \end{array}$$

Lemma

Let μ_1 be the smallest positive eigenvalue of DD^T (i.e., the Fiedler eigenvalue), and let μ_{n-1} be the largest eigenvalue. If $k \ge \sqrt{2\mu_{n-1}}$, then

$$\gamma_1 = \frac{1}{\sqrt{\mu_1}}.$$

Proof sketch

- Use SVD of D to obtain decoupled, second-order systems
- Determine largest gain of decoupled systems

Background		Problem Setup	Multiple Link Method	Single Link Method ooooo●oo	Examples 000000000
Stability	v Analvs	is			

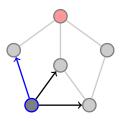
$$\underbrace{\begin{array}{c} u \\ \end{array}} \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix} \underbrace{\begin{array}{c} \tilde{z} \\ \end{array}}$$

• Δ is block diagonal, each block is:

$$\left(\sum_{j=1}^m d_{ij} z_j^d\right) \frac{(z_i^d)^T}{||z_i^d||^2}$$

Lemma

The \mathcal{L}_2 gain of this subsystem is:


$$\gamma_2 = \max_{i=1...n_f} \frac{\left|\left|\sum_{j=1}^m d_{ij} z_j^d\right|\right|}{\left|\left|z_i^d\right|\right|}$$

Background		Problem Setup	Multiple Link Method	Single Link Method ○○○○○○●○	Examples 000000000
Stability	/ Analys	is			

Lemma

The \mathcal{L}_2 gain of the Δ subsystem is:

$$\gamma_2 = \max_{i=1...n_f} \frac{\left|\left|\sum_{j=1}^m d_{ij} z_j^d\right|\right|}{\left|\left|z_i^d\right|\right|}$$

To calculate the singular values:

- Draw all edges away from (or all towards) a follower node
- Calculate the norm of the vector sum of these edges
- Divide by the norm of the assigned link

duction

Problem Setup

Multiple Link Method

Single Link Method

Examples 000000000

Stability via Small Gain

Theorem

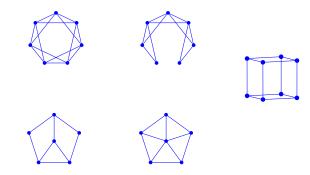
If $k \geq \sqrt{\mu_{n-1}}$ and

$$\frac{1}{\sqrt{\mu_1}} \max_{i=1,\dots,n-1} \left\{ \frac{||\sum_{j=1}^m d_{ij} z_j^d||}{||z_i^d||} \right\} < 1$$

then the formation control strategy is stable.

- Depends on the sensing topology and the formation geometry
- Easy to check geometrically

duction


Problem Set

Iultiple Link Methoo

Single Link Method

Examples ••••••

Examples

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples o●ooooooo
Circula	nt				

ckground Introd

Problem

Multiple Link Metho

Single Link Method

Examples

Modified Circulant

luction

Problem Setup

Multiple Link Metho

Single Link Method

Examples

Modified Circulant, 3 Leaders

luction

Problem Setup

Multiple Link Metho

Single Link Method

Examples 000000000

Pentagon, Not Parallel Rigid

ction

Problem Setup

Multiple Link Methor

Single Link Method

Examples 000000000

Pentagon, Parallel Rigid

ion

roblem Setup

Multiple Link Metho

Single Link Method

Examples 000000000

Pentagon, Different Leader

Background	Problem Setup	Multiple Link Method	Single Link Method	Examples 00000000
Cube				

Background		Problem Setup	Multiple Link Method	Single Link Method	Examples 00000000
Future	Work				

- Much larger networks, probabilistic control
- In the limit, continuum of agents
- How to derive full system description from probabilistic control strategies? (Micro to Macro)
- Chemotaxis-inspired control (self-aggregation, source seeking, "formations" defined by distributions)

Background	Problem Setup	Multiple Link Method	Single Link Method	Examples
				000000000

Thank You