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Introduction

n Linear state estimation using multiple sensors is a commonly 
performed task in e.g. radar tracking, industrial monitoring, remote 
sensing, wireless control systems, mobile robotics

n Many systems nowadays use digital communications
q Analog signals need to be quantized

n Wireless channels are  bandwidth limited
q Sensor network applications: severe bandwidth limitations

n Characterize the trade-off between estimation performance and 
quantization rate (extension of the traditional rate-distortion theory)



Introduction

n Estimate a discrete time linear system
n Sensors transmit quantized innovations

q For unstable systems, states become unbounded while innovations 
remains of bounded variance

n In our work, we establish a relationship between quantization rate 
and estimation error for linear dynamical system in a multi-terminal 
setting, in the case of high rate quantization
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Introduction – Related Work

n Similar ideas of quantizing the innovations have been previously considered
n [Nair&Evans,04] - Single sensor, stable scheme but performance difficult to 

analyze
n [Msechu et al. 2008], [You et al. 2011] – Estimator not stable for unstable systems
n [Sukhavasi and Hassibi, 2011] – Single sensor, particle filter based scheme, 

performance difficult to analyze
n [Fu and deSouza, 2009] – Single sensor, logarithmic quantizer, proof of stability 

for bounded noise
n Information theoretic multi-terminal estimation: CEO problem



The CEO Problem
n Simplified single-hop setup: multiple sensors communicating with a 

fusion centre over bandwidth constrained channels

+

+

+ Fusion centre
      (CEO)



The CEO Problem

n Original Results: Viswanathan and Berger [1996] for an i.i.d. scalar 
Gaussian source

n Rate distortion region: Oohama [1998] for an i.i.d. scalar Gaussian 
source

n Recent extensions to vector sources and correlated noise across 
sensors

n Most of these results apply to memoryless sources (at most 
stationary) and require source coding over asymptotically large 
block lengths

n Cannot be applied to linear dynamical systems (which have memory 
and may be unstable) or systems where coding over large numbers 
of blocks may not be feasible (delay-sensitive applications e.g. 
wireless control)



Multi-terminal state estimation for linear 
dynamical systems with rate constraints

n Basic ideas: quantize the innovations (requires smart sensors 
who can perform their own Kalman filtering) at each sensor

n Apply high rate quantization theory (although in theory this only 
applies at high rates, performance is quite good at moderate 
rates (3-4 bits per sample))

n We will study the single sensor case first, followed by multiple 
sensors

n Difficulty: static quantization may not result in a stable estimate 
for unstable systems, need to use dynamic quantization 

n Assumption: Fusion centre has knowledge of system 
parameters



Single Sensor

n Vector system
n Scalar sensor measurement

n Without quantization, optimal estimation given by Kalman filter

n Innovations process 

  



Single Sensor – Quantized Filtering 
Scheme
n Quantized filtering scheme (at both sensor and fusion centre)

n                           is quantization of the “innovations”
n     is scaling factor for adaptive “zooming” quantizers

q if quantizer saturates, can “zoom out”
q used to prove stability for unbounded (Gaussian) noise

n         is an extra term to account for quantization noise variance



Single Sensor – Quantized Filtering 
Schemen Use shorthand 
n Assume                       is approximately

n Can use a uniform quantizer of N levels
q Asymptotically optimal quantizer range and distortion given in 

[Hui&Neuhoff,2001], can then obtain
where 

q Can generalize to lattice vector quantizers
n Can also use an “optimal” Lloyd-Max quantizer of N levels (optimal 

for Gaussian distribution)
q Can obtain                                             where 
q Difficult to generalize to vector quantizers (optimal quantizers not known 

in general)
n Quantizer of [Nair&Evans,04] – Can be used but performance 

difficult to analyze



Single Sensor - Stability

n Choose

with               and              being constants, and 

n Define

n Theorem:  



Single Sensor – Proof of Stability

n Sketch of proof

n Similar to [Nair&Evans,04], consider an upper bound to                
given by                                                     

for some random variable L>0 and some 

n Can then show the following Lemma:

where      is a constant that depends only on    and N



Single Sensor – Proof of Stability

n Using the lemma and similar arguments from [Gurt&Nair,09], can 
then derive the recursive relationship

n                  and                 can be upper bounded by constants
n Since                                , and                , we have  

for N sufficiently large, which proves that                , and hence  

               , is bounded for all k



Single Sensor – Choice of scaling factors

n Recall

n Choice of dv and dw can affect performance
n If we choose                                                                     

where K is the steady state value of Kk and                         , then     
                           for large N

q Reason: For large N, quantizer saturation is rare. Choice of dv ensures 
that              when saturation doesn’t occur. 



Single Sensor – Asymptotic Analysis

n Pk is an approximation to the mean squared error
n As                                   satisfying 

where 

n Assume high rate quantization (or large N) and analyze behaviour of

       with N 

n Difficulty - no closed form expression for       in vector systems 



Single Sensor – Asymptotic Analysis

n Technique used - Extend method for finding asymptotic solutions to 
algebraic equations in perturbation theory to matrices

n Write          as

where                    are matrices not dependent on N

n Substitute                                                         into equation above



Single Sensor – Asymptotic Analysis

n Obtain

n Collect terms of same order to solve for 



Single Sensor – Asymptotic Analysis

n Collecting “constant” terms:

n Algebraic Riccati equation, can solve for 
n Same equation as satisfied by       , the steady state error 

covariance in the case of no quantization 

n Collecting             terms:

n Lyapunov equation, can solve for 



Single Sensor – Asymptotic Analysis

n Therefore

where



Multiple Sensors

n Vector system
n M sensors with scalar measurements             

n Detectability at all sensors assumed (without this, the problem is 
much harder and currently under investigation)
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Multiple Sensors – Decentralized Kalman Filter

n In the case with no quantization, [Hashemipour et al. 1988]
q Sensors run individual Kalman filters using local information
q Fusion centre combines local estimates to form global estimate
q Global estimate same as fusion centre having access to individual 

sensor measurements                               

                                 
n                                  are local quantities computed at individual 

sensors
q Can be reconstructed at fusion centre if sensors send local innovations



Multiple Sensors - Quantized Filtering Scheme
n Modify the scheme of [Hashemipour et al. 1988] 
n Individual sensors run:

n Fusion centre runs:



Multiple Sensors - Quantized Filtering Scheme

n Sensor i uses either asymptotically optimal uniform quantizer of Ni 
quantization levels or “optimal” quantizer of Ni quantization levels 

n We have 

where

n li,k are updated as in single sensor case
n Provided that Ni is sufficiently large that the filter is stable when 

restricted to any single sensor, then stability of the quantized filtering 
scheme for multiple sensors will also hold. 



Multiple Sensors – Asymptotic Analysis

n Study the behaviour of        as  

n From analysis of single sensor case, we have

n Making use of this result and similar techniques to single sensor 
case, can find that

 where          satisfy Lyapunov equations



Multiple Sensors – Rate Allocation
n Want to allocate a total rate        amongst the sensors
n Sensor i has rate 

n One possible formulation is to minimize trace of asymptotic 
expression for        subject to  

n Will obtain discrete optimization problems



Multiple Sensors – Rate Allocation

n For uniform quantization, the discrete optimization problem is

where

n If we relax assumption that Ri is integer, have the problem

n However, this relaxed problem is still non-convex



Multiple Sensors – Rate Allocation

n For optimal quantization, the discrete optimization problem is

where now

n If we relax assumption that Ri is integer, have the problem

n Lemma: The optimal solution to relaxed problem is 



Numerical Studies 

n System parameters:

n Single sensor case:

n Two sensors case:



Numerical Studies

n Single sensor, uniform quantizer
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Numerical Studies

n Two sensors, optimal quantizer, N1=N2=N
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Numerical Studies

n Two sensors, uniform quantization
n Rate allocation, 

 



Numerical Studies

n Two sensors, optimal quantization
n Rate allocation, 

 

n Solving the relaxed problem gives                                          , 
corresponding to rates 



Conclusions and further work

n Derived asymptotic expression relating estimation error with 
quantization rates of sensors

n Sketched a proof of stability of the scheme
n Considered a rate allocation problem

n Further areas of investigation
q Packet loss and high rate quantization
q Vector measurements: dynamic quantization for lattice vector quantizers
q Detectability at all sensors a strong assumption
q Low data rates?

n Proof of stability here holds for sufficiently high bit rates
n May need different schemes to achieve stability for lower bit rates
n Tradeoff between estimation performance and data rate for rates close to 

minimum bit rates
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