Linear State Estimation Via Multiple Sensors Over Rate-Constrained Channels

Subhrakanti Dey Joint work with Alex Leong and Girish Nair THE UNIVERSITY OF Nair Department of Electrical and Electronic Engineering THE UNIVERSITY OF MELBOURNE, AUSTRALIA



#### Outline

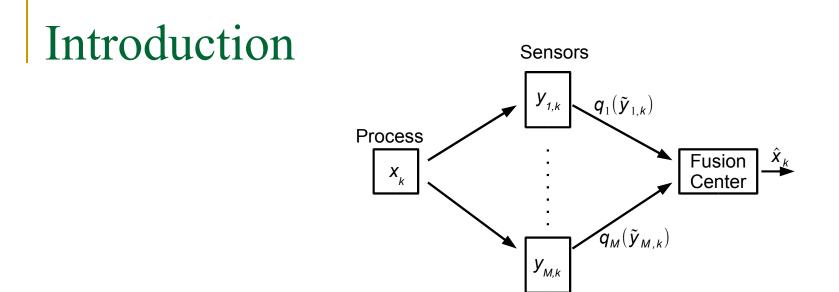
- Introduction & Motivation
- Multi-terminal estimation problems
- Single Sensor
- Multiple Sensors
- Numerical Studies
- Remarks and Conclusions



#### Introduction

- Linear state estimation using multiple sensors is a commonly performed task in e.g. radar tracking, industrial monitoring, remote sensing, wireless control systems, mobile robotics
- Many systems nowadays use digital communications
  - Analog signals need to be quantized
- Wireless channels are bandwidth limited
  - Sensor network applications: severe bandwidth limitations
- Characterize the trade-off between estimation performance and quantization rate (extension of the traditional rate-distortion theory)





- Estimate a discrete time linear system
- Sensors transmit quantized innovations
  - For unstable systems, states become unbounded while innovations remains of bounded variance
- In our work, we establish a relationship between quantization rate and estimation error for linear dynamical system in a multi-terminal setting, in the case of high rate quantization



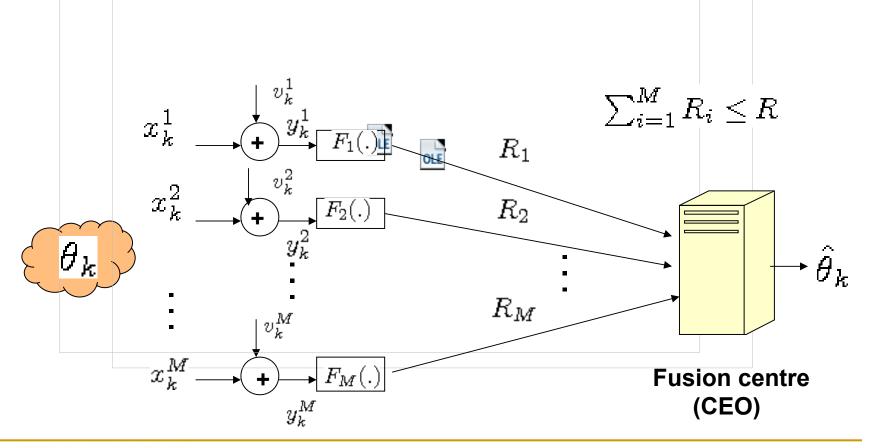
#### Introduction – Related Work

- Similar ideas of quantizing the innovations have been previously considered
  - [Nair&Evans,04] Single sensor, stable scheme but performance difficult to analyze
  - [Msechu et al. 2008], [You et al. 2011] Estimator not stable for unstable systems
  - [Sukhavasi and Hassibi, 2011] Single sensor, particle filter based scheme, performance difficult to analyze
  - [Fu and deSouza, 2009] Single sensor, logarithmic quantizer, proof of stability for bounded noise
  - Information theoretic multi-terminal estimation: CEO problem



#### The CEO Problem

Simplified single-hop setup: multiple sensors communicating with a fusion centre over bandwidth constrained channels





#### The CEO Problem

- Original Results: Viswanathan and Berger [1996] for an i.i.d. scalar Gaussian source
- Rate distortion region: Oohama [1998] for an i.i.d. scalar Gaussian source
- Recent extensions to vector sources and correlated noise across sensors
- Most of these results apply to memoryless sources (at most stationary) and require source coding over asymptotically large block lengths
- Cannot be applied to linear dynamical systems (which have memory and may be unstable) or systems where coding over large numbers of blocks may not be feasible (delay-sensitive applications e.g. wireless control)



# Multi-terminal state estimation for linear dynamical systems with rate constraints

- Basic ideas: quantize the innovations (requires smart sensors who can perform their own Kalman filtering) at each sensor
- Apply high rate quantization theory (although in theory this only applies at high rates, performance is quite good at moderate rates (3-4 bits per sample))
- We will study the single sensor case first, followed by multiple sensors
- Difficulty: static quantization may not result in a stable estimate for unstable systems, need to use dynamic quantization
- Assumption: Fusion centre has knowledge of system parameters



### Single Sensor

- Vector system  $x_{k+1} = Ax_k + w_k$
- Scalar sensor measurement  $y_k = Cx_k + v_k$
- Without quantization, optimal estimation given by Kalman filter

$$\begin{aligned} \hat{x}_{k|k-1}^{kf} &= A \hat{x}_{k-1|k-1}^{kf} \\ \hat{x}_{k|k}^{kf} &= \hat{x}_{k|k-1}^{kf} + K_{k}^{kf} (y_{k} - C \hat{x}_{k|k-1}^{kf}) = \hat{x}_{k|k-1}^{kf} + K_{k}^{kf} \tilde{y}_{k}^{kf} \\ K_{k}^{kf} &= P_{k|k-1}^{kf} C^{T} (C P_{k|k-1}^{kf} C^{T} + \Sigma_{v})^{-1} \\ P_{k|k-1}^{kf} &= A P_{k-1|k-1}^{kf} A^{T} + \Sigma_{w} \\ P_{k|k}^{kf} &= P_{k|k-1}^{kf} - P_{k|k-1}^{kf} C^{T} (C P_{k|k-1}^{kf} C^{T} + \Sigma_{v})^{-1} C P_{k|k-1}^{kf} \end{aligned}$$

Innovations process  $\tilde{y}_k^{kf} \triangleq y_k - C\hat{x}_{k|k-1}^{kf} \sim N(0, CP_{k|k-1}^{kf}C^T + \Sigma_v)$ 



#### Single Sensor – Quantized Filtering Scheme

Quantized filtering scheme (at both sensor and fusion centre)

$$\hat{x}_{k|k-1} = A\hat{x}_{k-1|k-1}$$

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k l_k q \left(\frac{y_k - C\hat{x}_{k|k-1}}{l_k}\right)$$

$$K_k = P_{k|k-1}C^T (CP_{k|k-1}C^T + \Sigma_v + \Sigma_{n,k})^{-1}$$

$$P_{k|k-1} = AP_{k-1|k-1}A^T + \Sigma_w$$

$$P_{k|k} = P_{k|k-1} - P_{k|k-1}C^T (CP_{k|k-1}C^T + \Sigma_v + \Sigma_{n,k})^{-1} CP_{k|k-1}$$

- $l_k q(\frac{y_k c\hat{x}_{k|k-1}}{l_k})$  is quantization of the "innovations"
- $l_k$  is scaling factor for adaptive "zooming" quantizers
  - if quantizer saturates, can "zoom out"
  - used to prove stability for unbounded (Gaussian) noise
- $\Sigma_{n,k}$  is an extra term to account for quantization noise variance



#### Single Sensor – Quantized Filtering

# Scheme $P_k = P_{k|k-1}$

- Assume  $y_k C\hat{x}_{k|k-1}$  is approximately  $N(0, CP_kC^T + \Sigma_v)$
- Can use a uniform quantizer of N levels
  - Asymptotically optimal quantizer range and distortion given in [Hui&Neuhoff,2001], can then obtain  $\Sigma_{n,k} = \delta_N (CP_k C^T + \Sigma_v)$ where  $\delta_N = \frac{4 \ln N}{3N^2}$
  - Can generalize to lattice vector quantizers
- Can also use an "optimal" Lloyd-Max quantizer of N levels (optimal for Gaussian distribution)  $\pi \sqrt{3}$ 
  - Can obtain  $\Sigma_{n,k} = \delta_N (CP_k C^T + \Sigma_v)$  where  $\delta_N = \frac{\pi\sqrt{3}}{2N^2}$
  - Difficult to generalize to vector quantizers (optimal quantizers not known in general)
- Quantizer of [Nair&Evans,04] Can be used but performance difficult to analyze



#### Single Sensor - Stability

Choose

$$\begin{aligned} l_k &= ||C||\tilde{l}_k + d_v \\ \tilde{l}_k &= ||A(I - K_k C)||\tilde{l}_{k-1} + d_w + ||AK_k||d_v + ||AK_k||(||C||\tilde{l}_{k-1} + d_v)\kappa(\omega_{k-1}) \end{aligned}$$

with  $d_w > 0$  and  $d_v > 0$  being constants, and  $\kappa(\omega_k) = \begin{cases} \frac{2\sqrt{\ln N}}{N} & , & \text{quantizer not saturated} \\ \sqrt{\ln(N)} & , & \text{quantizer saturated} \end{cases}$ 

Define 
$$f_k = x_k - \hat{x}_{k|k-1}$$

Theorem:

 $\mathbb{E}[||f_k||^2]$  is bounded  $\forall k$  for sufficiently large N.



# Single Sensor – Proof of Stability

- Sketch of proof
- Similar to [Nair&Evans,04], consider an upper bound to  $\mathbb{E}[||f_k||^2]$ given by  $||f_k, L||_* \triangleq \sqrt{\mathbb{E}[L^2 + |f_k|^{2+\epsilon}L^{-\epsilon}]}$

for some random variable L>0 and some  $\epsilon>0$ 

• Can then show the following Lemma:

$$||X - Lq\left(\frac{X}{L}\right), L\kappa(\Omega)||_* \le \frac{\zeta}{(\ln N)^{\epsilon/2}}||X, L||_*$$

where  $_{\mathcal{L}}$  is a constant that depends only on $_{\mathcal{E}}$  and N



#### Single Sensor – Proof of Stability

 Using the lemma and similar arguments from [Gurt&Nair,09], can then derive the recursive relationship

$$\begin{aligned} ||f_{k+1}, \tilde{l}_{k+1}||_* &\leq \left( ||A(I - K_k C)|| + ||AK_k|| \cdot ||C|| \frac{\zeta}{(\ln N)^{\epsilon/2}} \right) ||f_k, \tilde{l}_k||_* \\ &+ ||w_k, d_w||_* + ||AK_k|| \left( 1 + \frac{\zeta}{(\ln N)^{\epsilon/2}} \right) ||v_k, d_v||_* \end{aligned}$$

||w<sub>k</sub>, d<sub>w</sub>||\* and ||v<sub>k</sub>, d<sub>v</sub>||\* can be upper bounded by constants
Since ||A(I - K<sub>k</sub>C)|| < 1, and K<sub>k</sub> → K, we have
(||A(I - K<sub>k</sub>C)|| + ||AK<sub>k</sub>||.||C|| <sup>ζ</sup>/<sub>(ln N)<sup>ε/2</sup></sub>) < 1</li>
for *N* sufficiently large, which proves that ||f<sub>k</sub>, l̃<sub>k</sub>||\*, and hence E[||f<sub>k</sub>||<sup>2</sup>], is bounded for all k



# Single Sensor – Choice of scaling factors

#### Recall

$$\begin{split} l_k &= ||C||\tilde{l}_k + d_v \\ \tilde{l}_k &= ||A(I - K_k C)||\tilde{l}_{k-1} + d_w + ||AK_k||d_v + ||AK_k||(||C||\tilde{l}_{k-1} + d_v)\kappa(\omega_{k-1}) \end{split}$$

- Choice of dv and dw can affect performance
  - If we choose  $d_v = \frac{1 ||A(I KC)|| ||AK|| \cdot ||C|| \kappa_{min} ||C|| d_w}{1 ||A(I KC)|| + ||AK|| \cdot ||C||}$

where *K* is the steady state value of *Kk* and  $\kappa_{min} = \frac{2\sqrt{\ln N}}{N}$ , then for large *N* 

Reason: For large *N*, quantizer saturation is rare. Choice of dv ensures that  $l_k \to 1$  when saturation doesn't occur.



- Pk is an approximation to the mean squared error
- As  $k \to \infty$ ,  $P_k \to P_\infty$  satisfying

$$P_{\infty} = AP_{\infty}A^{T} + \Sigma_{w} - \frac{AP_{\infty}C^{T}(CP_{\infty}C^{T} + \Sigma_{v})^{-1}CP_{\infty}A^{T}}{1 + \delta_{N}}$$

where 
$$\delta_N = \begin{cases} \frac{\pi\sqrt{3}}{2N^2} &, \text{ optimal quantization} \\ \frac{4\ln N}{3N^2} &, \text{ optimal uniform quantization} \end{cases}$$

- Assume high rate quantization (or large *N*) and analyze behaviour of  $P_{\infty}$  with *N*
- Difficulty no closed form expression for  $P_{\infty}$  in vector systems



$$P_{\infty} = AP_{\infty}A^{T} + \Sigma_{w} - \frac{AP_{\infty}C^{T}(CP_{\infty}C^{T} + \Sigma_{v})^{-1}CP_{\infty}A^{T}}{1 + \delta_{N}}$$

- Technique used Extend method for finding asymptotic solutions to algebraic equations in perturbation theory to matrices
- Write  $P_{\infty}$  as  $P_{\infty} = \Phi_0 + \delta_N \Phi_1 + \delta_N^2 \Phi_2 + \dots$ where  $\Phi_0, \Phi_1, \dots$  are matrices not dependent on *N*
- Substitute  $P_{\infty} = \Phi_0 + \delta_N \Phi_1 + \delta_N^2 \Phi_2 + \dots$  into equation above



Obtain

$$\begin{split} \Phi_{0} + \delta_{N} \Phi_{1} + \cdots &= A(\Phi_{0} + \delta_{N} \Phi_{1} + \dots) A^{T} + \Sigma_{w} \\ - A(\Phi_{0} + \delta_{N} \Phi_{1} + \dots) C^{T} (C(\Phi_{0} + \delta_{N} \Phi_{1} + \dots) C^{T} + \Sigma_{v})^{-1} \\ &\times C(\Phi_{0} + \delta_{N} \Phi_{1} + \dots) A^{T} \frac{1}{1 + \delta_{N}} \\ &= A(\Phi_{0} + \delta_{N} \Phi_{1} + \dots) A^{T} + \Sigma_{w} - A(\Phi_{0} + \delta_{N} \Phi_{i} + \dots) C^{T} \\ &\times [(C\Phi_{0}C^{T} + \Sigma_{v})^{-1} - \delta_{N} (C\Phi_{0}C^{T} + \Sigma_{v})^{-1} C\Phi_{1}C^{T} (C\Phi_{0}C^{T} + \Sigma_{v})^{-1} + \dots] \\ &\times C(\Phi_{0} + \delta_{N} \Phi_{1} + \dots) A^{T} (1 - \delta_{N} + \dots) \end{split}$$

Collect terms of same order to solve for  $\Phi_0, \Phi_1, \ldots$ 



- Collecting "constant" terms:  $\Phi_0 = A\Phi_0 A^T + \Sigma_w - A\Phi_0 C^T (C\Phi_0 C^T + \Sigma_v)^{-1} C\Phi_0 A^T$
- Algebraic Riccati equation, can solve for  $\Phi_0$
- Same equation as satisfied by  $P^{kf}_{\infty}$ , the steady state error covariance in the case of no quantization
- Collecting  $O(\delta_N)$  terms:

$$\Phi_{1} = \left(A - A\Phi_{0}C^{T}(C\Phi_{0}C^{T} + \Sigma_{v})^{-1}C\right)\Phi_{1}\left(A - A\Phi_{0}C^{T}(C\Phi_{0}C^{T} + \Sigma_{v})^{-1}C\right)^{T} + A\Phi_{0}C^{T}(C\Phi_{0}C^{T} + \Sigma_{v})^{-1}C\Phi_{0}A^{T}$$

Lyapunov equation, can solve for  $\Phi_1$ 

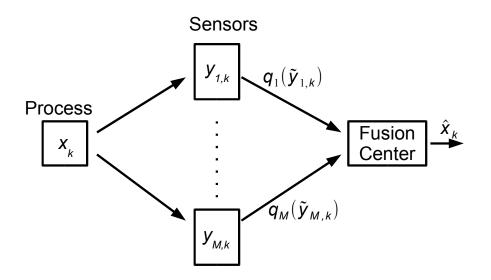


Therefore

$$P_{\infty} = P_{\infty}^{kf} + \delta_N \Phi_1 + \dots$$
  
where  $\delta_N = \begin{cases} \frac{\pi \sqrt{3}}{2N^2} &, & \text{optimal quantization} \\ \frac{4 \ln N}{3N^2} &, & \text{optimal uniform quantization} \end{cases}$ 



# Multiple Sensors



- Vector system  $x_{k+1} = Ax_k + w_k$
- *M* sensors with scalar measurements

$$y_{i,k} = C_i x_k + v_{i,k}, \quad i = 1, \dots, M$$

 Detectability at all sensors assumed (without this, the problem is much harder and currently under investigation)



#### Multiple Sensors – Decentralized Kalman Filter

- In the case with no quantization, [Hashemipour et al. 1988]
  - Sensors run individual Kalman filters using local information
  - Fusion centre combines local estimates to form global estimate
  - Global estimate same as fusion centre having access to individual sensor measurements

$$\begin{split} \hat{x}_{k|k-1}^{kf} &= A \hat{x}_{k-1|k-1}^{kf} \\ \hat{x}_{k|k}^{kf} &= P_{k|k}^{kf} \Big( P_{k|k-1}^{kf^{-1}} \hat{x}_{k|k-1}^{kf} + \sum_{i=1}^{M} \Big\{ P_{i,k|k}^{kf^{-1}} \hat{x}_{i,k|k}^{kf} - P_{i,k|k-1}^{kf^{-1}} \hat{x}_{i,k|k-1}^{kf} \Big\} \Big) \\ P_{k|k-1}^{kf} &= A P_{k-1|k-1}^{kf} A^T + \Sigma_w \\ P_{k|k}^{kf} &= P_{k|k-1}^{kf} - P_{k|k-1}^{kf} \mathbf{C}^T (\mathbf{C} P_{k|k-1}^{kf} \mathbf{C}^T + \Sigma_v)^{-1} \mathbf{C} P_{k|k-1}^{kf} \end{split}$$

 $\hat{x}_{i,k|k+1}^{kf}, \hat{x}_{i,k|k}^{kf}, P_{i,k|k+1}^{kf}, P_{i,k|k}^{kf}$  are local quantities computed at individual sensors

Can be reconstructed at fusion centre if sensors send local innovations



#### Multiple Sensors - Quantized Filtering Scheme

- Modify the scheme of [Hashemipour et al. 1988]
- Individual sensors run:

$$\begin{aligned} \hat{x}_{i,k|k-1} &= A\hat{x}_{i,k-1|k-1} \\ \hat{x}_{i,k|k} &= \hat{x}_{i,k|k-1} + K_{i,k}l_{i,k}q_{i,k} \left(\frac{y_{i,k} - C_i\hat{x}_{i,k|k-1}}{l_{i,k}}\right) \\ K_{i,k} &= P_{i,k|k-1}C_i^T (C_iP_{i,k|k-1}C_i^T + \Sigma_{i,v} + \Sigma_{i,n,k})^{-1} \\ P_{i,k|k-1} &= AP_{i,k-1|k-1}A^T + \Sigma_w \\ P_{i,k|k} &= P_{i,k|k-1} - P_{i,k|k-1}C_i^T (C_iP_{i,k|k-1}C_i^T + \Sigma_{i,v} + \Sigma_{i,n,k})^{-1}C_iP_{i,k|k-1} \end{aligned}$$

Fusion centre runs:

$$\hat{x}_{k|k-1} = A\hat{x}_{k-1|k-1}$$

$$\hat{x}_{k|k} = P_{k|k} \Big( P_{k|k-1}^{-1} \hat{x}_{k|k-1} + \sum_{i=1}^{M} \Big\{ P_{i,k|k}^{-1} \hat{x}_{i,k|k} - P_{i,k|k-1}^{-1} \hat{x}_{i,k|k-1} \Big\} \Big)$$

$$P_{k|k-1} = AP_{k-1|k-1}A^{T} + \Sigma_{w}$$

$$P_{k|k} = P_{k|k-1} - P_{k|k-1}\mathbf{C}^{T} (\mathbf{C}P_{k|k-1}\mathbf{C}^{T} + \Sigma_{v} + \Sigma_{n,k})^{-1} \mathbf{C}P_{k|k-1}$$



#### Multiple Sensors - Quantized Filtering Scheme

Sensor *i* uses either asymptotically optimal uniform quantizer of *Ni* quantization levels or "optimal" quantizer of *Ni* quantization levels

We have 
$$\Sigma_{i,n,k} = \delta_{i,N_i} (C_i P_{i,k} C_i^T + \Sigma_{i,v})$$
  
where

$$\delta_{i,N_i} = \begin{cases} \frac{\pi\sqrt{3}}{2N_i^2} &, & \text{optimal quantization} \\ \frac{4\ln N_i}{3N_i^2} &, & \text{optimal uniform quantization} \end{cases}$$

- *li,k* are updated as in single sensor case
- Provided that Ni is sufficiently large that the filter is stable when restricted to any single sensor, then stability of the quantized filtering scheme for multiple sensors will also hold.



#### Multiple Sensors – Asymptotic Analysis

- Study the behaviour of  $P_{\infty}$  as  $N_i \to \infty, \forall i$
- From analysis of single sensor case, we have  $P_{i,\infty} = P_{i,\infty}^{kf} + O(\delta_{i,N_i})$
- Making use of this result and similar techniques to single sensor case, can find that

$$P_{\infty} = P_{\infty}^{kf} + \sum_{i=1}^{M} \delta_{i,N_{i}} \Phi_{1,i} + \sum_{i,j} O(\delta_{i,N_{i}} \delta_{j,N_{j}})$$
  
where  $\Phi_{1,i}$  satisfy Lyapunov equations

$$\Phi_{1,i} = \left( A - A \Phi_0 \mathbf{C}^T (\mathbf{C} \Phi_0 \mathbf{C}^T + \Sigma_v)^{-1} \mathbf{C} \right) \Phi_{1,i} \left( A - A \Phi_0 \mathbf{C}^T (\mathbf{C} \Phi_0 \mathbf{C}^T + \Sigma_v)^{-1} \mathbf{C} \right)^T + A \Phi_0 \mathbf{C}^T (\mathbf{C} \Phi_0 \mathbf{C}^T + \Sigma_v)^{-1} F_i (\mathbf{C} \Phi_0 \mathbf{C}^T + \Sigma_v)^{-1} \mathbf{C} \Phi_0 A^T$$



#### Multiple Sensors – Rate Allocation

- Want to allocate a total rate  $R_{tot}$  amongst the sensors
- Sensor *i* has rate  $R_i = \log_2(N_i)$
- One possible formulation is to minimize trace of asymptotic expression for  $P_{\infty}$  subject to

$$\sum_{i=1}^{M} R_i = R_{tot}$$

Will obtain discrete optimization problems



#### Multiple Sensors – Rate Allocation

For uniform quantization, the discrete optimization problem is

$$\min_{R_1,...,R_M \in \mathbb{Z}^+} \operatorname{tr}(P_{\infty}^{kf}) + \sum_{i=1}^M \frac{e_i R_i}{2^{2R_i}} \text{ s.t. } \sum_{i=1}^M R_i = R_{tot}$$
  
where  $e_i = \frac{4 \ln 2}{3} \operatorname{tr}(\Phi_{1,i})$ 

If we relax assumption that *Ri* is integer, have the problem

$$\min_{\alpha_1,...,\alpha_M} \operatorname{tr}(P_{\infty}^{kf}) + \sum_{i=1}^M \frac{e_i \alpha_i R_{tot}}{2^{2\alpha_i R_{tot}}}, \text{ s.t. } \sum_{i=1}^M \alpha_i = 1, \alpha_i \ge 0$$

However, this relaxed problem is still non-convex



#### Multiple Sensors – Rate Allocation

For optimal quantization, the discrete optimization problem is

$$\min_{R_1,\ldots,R_M\in\mathbb{Z}^+}\operatorname{tr}(P_{\infty}^{kf}) + \sum_{i=1}^M \frac{e_i}{2^{2R_i}} \text{ s.t. } \sum_{i=1}^M R_i = R_{tot}$$
  
where now  $e_i = \frac{\pi\sqrt{3}}{2}\operatorname{tr}(\Phi_{1,i})$ 

If we relax assumption that *Ri* is integer, have the problem

$$\min_{\alpha_1,\dots,\alpha_M} \operatorname{tr}(P_{\infty}^{kf}) + \sum_{i=1}^M \frac{e_i}{2^{2\alpha_i R_{tot}}}, \text{ s.t. } \sum_{i=1}^M \alpha_i = 1, \alpha_i \ge 0$$

Lemma: The optimal solution to relaxed problem is

$$\alpha_i^* = \frac{1}{M} + \frac{1}{2R_{tot}} \log_2 \frac{e_i}{\left(\prod_{j=1}^M e_j\right)^{1/M}}$$



System parameters:

$$A = \begin{bmatrix} 1.2 & 0.5 \\ 0 & 1.1 \end{bmatrix}, \quad \Sigma_w = I$$

Single sensor case:

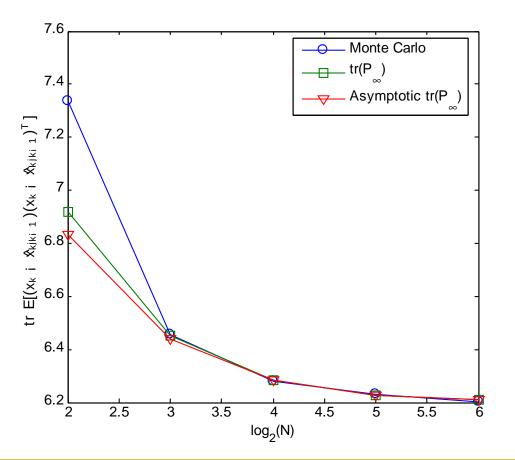
$$C = \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad \Sigma_v = 1$$

Two sensors case:

$$C_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad \Sigma_{1,v} = 1$$
$$C_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad \Sigma_{2,v} = 0.2$$

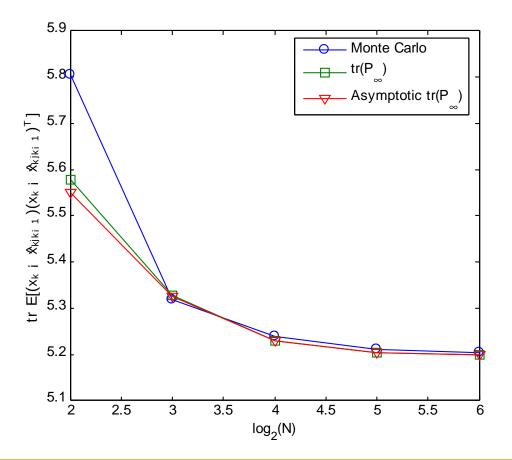


Single sensor, uniform quantizer





Two sensors, optimal quantizer, *N1=N2=N* 





- Two sensors, uniform quantization
- Rate allocation,  $R_{tot} = 8$

| $R_1$ | $R_2$ | Monte Carlo | $\operatorname{tr}(P_{\infty})$ | Asymptotic $\operatorname{tr}(P_{\infty})$ |
|-------|-------|-------------|---------------------------------|--------------------------------------------|
| 2     | 6     | 5.242       | 5.2181                          | 5.2232                                     |
| 3     | 5     | 5.237       | 5.2177                          | 5.2179                                     |
| 4     | 4     | 5.247       | 5.2408                          | 5.2405                                     |
| 5     | 3     | 5.322       | 5.3166                          | 5.3212                                     |
| 6     | 2     | 5.585       | 5.4886                          | 5.5271                                     |



- Two sensors, optimal quantization
- Rate allocation,  $R_{tot} = 8$

| $R_1$ | $R_2$ | Monte Carlo | $\operatorname{tr}(P_{\infty})$ | Asymptotic $\operatorname{tr}(P_{\infty})$ |
|-------|-------|-------------|---------------------------------|--------------------------------------------|
| 2     | 6     | 5.474       | 5.2213                          | 5.2321                                     |
| 3     | 5     | 5.219       | 5.2119                          | 5.2124                                     |
| 4     | 4     | 5.240       | 5.2290                          | 5.2289                                     |
| 5     | 3     | 5.315       | 5.3136                          | 5.3185                                     |
| 6     | 2     | 6.306       | 5.5996                          | 5.6829                                     |

Solving the relaxed problem gives  $\alpha_1^*=0.3798, \alpha_2^*=0.6202$ , corresponding to rates  $R_1^*=3.0386, R_2^*=4.9614$ 



#### Conclusions and further work

- Derived asymptotic expression relating estimation error with quantization rates of sensors
- Sketched a proof of stability of the scheme
- Considered a rate allocation problem
- Further areas of investigation
  - Packet loss and high rate quantization
  - Vector measurements: dynamic quantization for lattice vector quantizers
  - Detectability at all sensors a strong assumption
  - Low data rates?
    - Proof of stability here holds for sufficiently high bit rates
    - May need different schemes to achieve stability for lower bit rates
    - Tradeoff between estimation performance and data rate for rates close to minimum bit rates

