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Motivation

 

Figure: An irrigation network.
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Figure: An automated irrigation network via distributed distant downstream feedback control.

zi (s) = Ci (s)ei (s), Ci (s) =
Ki Ti s+Ki

s(Ti Fi s+Ti ) , ei = ui − yi .
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Figure: Downstream errors.
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Figure: Upstream errors.
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Figure: Upstream input flows.
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Figure: Upstream errors.
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Figure: An automated irrigation network via distributed distant downstream feedback and

feedforward control. zi (s) = Ci (s)ei (s) + fivi+1, Ci (s) =
Ki Ti s+Ki

s(Ti Fi s+Ti ) , ei = ui − yi .
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Figure: An automated irrigation network equipped with a supervisory controller.
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Figure: Computational complexity of the centralized optimization method versus the number of
subsystems.
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Distributed Optimization Method

Distributed supervisory control
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Figure: An automated irrigation network equipped with distributed supervisory controller.
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Distributed Optimization Method

Distributed optimization method (problem formulation)

min
u=(u1,...,un)

{J(u1, ..., un), ui ⊂ Ui}

Ui ⊂ Rmi , argminui J(u1, ..., un) ∈ RNmi .
 

�eighborhood � i   

Figure: Two-level architecture for exchanging information between distributed decision makers.
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Distributed Optimization Method

Distributed optimization method (steps1)

N1 = {S1,S2}, N2 = {S3, S4}
I Initialization: The information exchange between neighborhoods at outer iterate t

makes it possible for subsystem Si to initialize its local decision variables as
h0

i = ut
i , where u0

i ∈ Ui are chosen arbitrarily at time t = 0.

I Inner Iterate: Then, subsystem Si performs p̄ inner iterates as follows:
For inner iterate p ∈ {0, 1, ..., p̄ − 1}, it first updates its decision variable via

hp+1
i = πih

∗
i + (1− πi )h

p
i ,

where
π1 + π2 = 1, π3 + π4 = 1

and

h∗1 = argminh1∈U1
J(h1, h

p
2 , h

0
3, h

0
4), h∗2 = argminh2∈U2

J(hp
1 , h2, h

0
3, h

0
4),

h∗3 = argminh3∈U3
J(h0

1, h
0
2, h3, h

p
4 ), h∗4 = argminh4∈U4

J(h0
1, h

0
2, h

p
3 , h4).

1[ACC2010] B. T. Stewart, J. B. Rawlings, and S. J. Wright.
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Distributed Optimization Method

Distributed optimization method (steps)

I Inner Iterate (continued): Then, subsystem Si trades its updated decision variable

hp+1
i with all other subsystems within its neighborhood.

I Outer Iterate: After p̄ inner iterates there is an outer iterate update as follows

ut+1
i = λih

p̄
i + (1− λi )u

t
i ,

where
λ1 = λ2, λ3 = λ4, λ1 + λ3 = 1.

Then, there is an outer iterate communication, in which the updated decision
variables ut+1

i are shared between all neighborhoods and subsequently between all
subsystems.
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Distributed Optimization Method

Feasibility, convergence and optimality results 2

Feasibility: Given any collection of disjoint neighborhoods, above strictly convex finite
horizon cost functional J, convex control constraint sets Ui and a feasible initialization
(i.e., u0

i ∈ Ui ), the inner and outer iterates are feasible (i.e., hp+1
i , ut+1

i ∈ Ui ).

Convergence: Given any collection of disjoint neighborhoods and a feasible
initialization, the strictly convex finite horizon cost functional J(ut

1, ..., u
t
n) is

non-increasing at each outer iterate t and converges as t →∞.

Optimality: Given any collection of disjoint neighborhoods, a feasible initialization,
strictly convex and quadratic cost J, and closed convex control constraint sets Ui , the
cost J(ut

1, ..., u
t
n) converges to the optimal cost J(u∗1 , ..., u

∗
n ), and the iterates

(ut
1, ..., u

t
n) converge to the unique optimal solution (u∗1 , ..., u

∗
n ), as t →∞.

2[AUCC2012]A. Farhadi, M. Cantoni, and P. M. Dower.
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Distributed Optimization Method

Interaction strength decomposition method
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Figure: Left: Communication graph. Right: Interaction strength graph summarizing the effects of
decision variables on subsystems.

No hopping is allowed for intra-neighborhood communication ⇒ Following the
communication graph, the size of each neighborhood must be at most 2:
Option1: {S2, S3}, {S4, S5}, {S6, S1}
Option2: {S1, S2}, {S3, S4}, {S5, S6}

Following interaction strength graph, option 2 is selected.
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Distributed Optimization Method

Interaction strength decomposition method
Dynamic system:

Si : xi [k + 1] = Aixi [k] + Biui [k] + vi [k], i = 1, 2, ..., n, k ∈ {0, 1, 2, ...,N − 1},

where

vi [k] =
n∑

j=1,j 6=i

Mijxj [k] + Nijuj [k].

Transfer function from U(z) =
(
U′1(z) . . . U′n(z)

)′
to state

X (z) =
(
X ′1(z) . . . X ′n(z)

)′
is given by

G(z) = V−1(z)W (z),

where V (z)=̇[Vij (z)] with

Vij (z)=̇

{
Ini , when i = j
−(zIni − Ai )

−1Mij , otherwise

and W (z)=̇[Wij (z)] with

Wij (z)=̇

{
(zIni − Ai )

−1Bi , when i = j
(zIni − Ai )

−1Nij , otherwise.
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Distributed Optimization Method

Interaction strength decomposition method

G(z)|z=1 =


E1 E12 . . . E1n

E21 E2 . . . E2n

.

.

.
En1 En2 . . . En

 ,Eij ∈ Rni×mj .

Interaction Strength (IS):

ISij =̇


0, if i = j

σmax (Eij )

σmin(Ei )
, if σmin(Ei ) 6= 0 and i 6= j

σmax (Eij )

γ
, if σmin(Ei ) = 0 and i 6= j

Normalized interaction strength:

ISNij =̇ round
( ISij

ISmin

)
, ISmin =̇ min

{i,j ;ISij>0}
ISij .
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Distributed Optimization Method

Interaction strength decomposition method

Example: Consider a system with six interacting scalar subsystems. The aggregated
system is described as follows:

x[k + 1] = Ax[k] + Bu[k],

x[k] =
(
x1[k] x2[k] x3[k] x4[k] x5[k] x6[k]

)′
u[k] =

(
u1[k] u2[k] u3[k] u4[k] u5[k] u6[k]

)′
,

A =


1.7049 −0.0049 −0.9082 −0.2732 0.5496 −0.2756
0.2328 1.4672 −0.0213 −0.4127 −0.4861 0.5709
0.1213 −0.1213 0.7311 0.0955 0.5566 −0.4652
−0.3836 0.3836 0.1393 1.2061 0.132 0.198
−0.1148 0.11.48 −0.6754 0.007 2.3762 −0.4357
−0.5148 0.5148 0.0246 −0.143 0.4762 1.5143

 ,

B = diag(1.7,−1, 1.5,−1.2, 1.9, 0.86).
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Distributed Optimization Method

Interaction strength decomposition method

Interaction strength matrix:

Subsystems S1 S2 S3 S4 S5 S6

S1 0 36 226 3 245 82
S2 37 0 21 29 49 27
S3 20 12 0 22 182 70
S4 93 55 63 0 148 39
S5 53 31 151 13 0 67
S6 106 62 73 1 185 0

Strength weights (SW (ij) =̇ ISNij + ISNji , i 6= j)

(1, 2) = 73 (1, 3) = 246 (1, 4) = 96 (1, 5) = 298
(1, 6) = 188 (2, 3) = 33 (2, 4) = 84 (2, 5) = 80
(2, 6) = 89 (3, 4) = 85 (3, 5) = 333 (3, 6) = 143

(4, 5) = 161 (4, 6) = 40 (5, 6) = 252 (5, 6) = 252

N1 = {S3, S5}, N2 = {S1, S6}, N3 = {S2,S4}.
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Distributed Optimization Method

Interaction strength decomposition method

Strength weights (SW (ijk)=̇ISNij + ISNik + ISNji + ISNjk + ISNki + ISNkj , i 6= j 6= k)

(1, 2, 3) = 352 (1, 2, 4) = 253 (1, 2, 5) = 451
(1, 2, 6) = 350 (1, 3, 4) = 427 (1, 3, 5) = 877
(1, 3, 6) = 577 (1, 4, 5) = 555 (1, 4, 6) = 324
(1, 5, 6) = 738 (2, 3, 4) = 202 (2, 3, 5) = 446
(2, 3, 6) = 265 (2, 4, 5) = 325 (2, 4, 6) = 213
(2, 5, 6) = 421 (3, 4, 5) = 579 (3, 4, 6) = 268
(3, 5, 6) = 728 (4, 5, 6) = 453 (4, 5, 6) = 453

N1 = {S1, S3, S5}, N2 = {S2, S4, S6}.
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Distributed Optimization Method

Performance criteria
Performance Loss: For a given number of outer iterate updates t and p̄, the
Performance Loss PLt(p̄) (measured in percent) is defined as

PLt(p̄) =̇ 100
(J(ut

1, ..., u
t
n)− J̄

J̄

)
,

where J̄ is the optimal cost.

Total Number of Iterations: For a given p̄,

Tt =̇ p̄ × t

is referred as the total number of iterations up to outer iterate t.

Total Number of Iterations for Convergence: For a given performance loss PL, let t̄PL

be the smallest integer such that

PLt(p̄) ≤ PL for all t ≥ t̄PL.

Then,
TPL =̇ p̄ × t̄PL

is referred as the total number of iterations for convergence.
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Distributed Optimization Method

Illustrative example

Dynamic system:

Si : xi [k + 1] = Aixi [k] + Biui [k] + vi [k], i = 1, 2, ..., 6, k ∈ {0, 1, 2, 3, 4},

where

xi [0] = 0, vi [k] =
6∑

j=1,j 6=i

Mijxj [k].

min
u

{
J(x[0], u1, ..., u6), xi [k] ∈ Xi = [−12, 12], ui [k] ∈ Gi = [−6, 6], ∀i , k

}
,

J(x[0], u1, ..., u6)=̇
6∑

i=1

4∑
k=0

||xi [k]− xd
i ||

2 + ||ui [k]||2.

xd
1 = 1, xd

2 = 2, xd
3 = 3, xd

4 = 4, xd
5 = 5, xd

6 = 6,

J̄ = 9370.89.
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Distributed Optimization Method

p̄ TPL PLt(p̄) at t = TPL/p̄ Computation time (sec.)
1 453 0.99 77.63

10 820 0.95 142.34
20 1400 0.93 244.93
50 3250 0.98 564.91

Table: Two-neighborhoods case.

p̄ TPL PLt(p̄) at t = TPL/p̄ Computation time (sec.)
1 424 0.99 74.23

10 2200 0.99 390.14
20 4320 0.98 755.36
50 10750 0.99 1885.2

Table: Three-neighborhoods case.

p̄ TPL PLt(p̄) at t = TPL/p̄ Computation time (sec.)
1 1020 0.99 179.21

10 10200 0.99 1834.3
20 20400 0.99 3569.9
50 51000 0.99 9027.9

Table: Six-neighborhoods case.
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Distributed Optimization Method

Illustrative example
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Figure: Computation time versus the total number of iterations for convergence TPL for different
decompositions and PL = 1 percent. Red: The two-neighborhoods case. Blue: The
three-neighborhoods case. Black: The six-neighborhoods case.

Computation time equals γTPL, where γ = 0.175.
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Distributed Optimization Method

Illustrative example
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Figure: Trade-offs between PLt(p̄) and Tt for different decompositions and p̄ = 10 (top figure)
and p̄ = 20 (bottom figure). Red: The two-neighborhoods case. Blue: The three-neighborhoods
case. Black: The six-neighborhoods case.
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Distributed Optimization Method

Illustrative example
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Figure: Trade-offs between the total number of iterations for convergence TPL and p̄ for different
decompositions and PL = 1 percent (top figure) and PL = 10 percent (bottom figure).Red: The
two-neighborhoods case. Blue: The three-neighborhoods case. Black: The six-neighborhoods case.
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Distributed Optimization Method

Example:

Inner iterate communication overhead: 1 second

Outer iterate communication overhead: 10 seconds

For the system decomposed into 3 neighborhoods with p̄ = 10:

Total communication overhead equals (220× 10 + 2200× 1 =)4400 seconds

Total computation time for producing the optimal inputs equals
(390.14 + 4400 =)4790.14 seconds.

Without decomposition and inner iterates:

Total communication overhead equals (950× 10 =)9500 seconds

Total computation time for producing the optimal inputs equals
(174.126 + 9500 =)9674.126 seconds.
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Computational Complexity Analysis
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Figure: An automated irrigation network via distributed distant downstream feedback control.

zi (s) = Ci (s)ei (s), Ci (s) =
Ki Ti s+Ki

s(Ti Fi s+Ti ) , ei = ui − yi .

Automated irrigation network model:

Si : xi [k + 1] = Aixi [k] + Biui [k] + Fidi [k] + vi [k], vi [k] = Mixi+1[k],

yi [k] = Cixi [k],

zi [k] = Dixi [k],

i = 1, 2, ..., n, k ∈ {0, 1, 2, ...,N − 1}.
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Figure: An automated irrigation network with distributed supervisory controller.

Cost functional:

min
u=(u1,...,un)

{
J(x[0], d, yd , u1, ..., un), Li ≤ yi [k], ui [k] ≤ Hi , 0 ≤ zi [k] ≤ Zi , ∀i , k

}
,

J(x[0], d, yd , u1, ..., un)=̇
n∑

i=1

N−1∑
k=0

||yi [k]− yd
i ||

2
Q + ||zi [k]||2P + ||ui [k]− ui [k − 1]||2R .
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Centralized technique (active set method)

Number of decision variables: nd

Number of inequality constraints: nc

Ccen(nd ) ∼ O(n3
d ), (for a given nc )3

Ccen(nc ) ∼ O(n3
c ), (for a given nd )4

Ccen(nd , nc ) ∼ O(n3
d × n3

c ) 5

For automated irrigation networks: nd = nN, nc = 6nN

Ccen(n) ∼ O(n3
d × n3

c ) ∼ O(n6)

3[ECC2009] M. S. K. Lau, S. P. Yue, K. V. Ling and J. M. Maciejowski.
4[TCST2010] Y. Wang and S. Boyd.
5[ECC2009],[TCST2010].
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Computational Complexity Analysis

Distributed technique

For synchronized communication:

Cdis(n) =

TPL(n)∑
j=1

Cj (n),

TPL(n): Total number of iterations for convergence

Cj (n): Maximum computation time of the decision maker with the dominating
computational complexity

Assumption: Distributed decision makers also use active set method for their smaller
QPs.

Number of decision variables of each decision maker: N

Number of inequality constraints of the dominating decision maker:{
N(4n + 1), if n ≤ N

2

N(4
⌊

N
2

⌋
+ 2), otherwise

.
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Computational Complexity Analysis

Distributed technique

For a given n, the dominating decision maker remains constant for all iterations,
whereby the dominating computational complexity Cj (n) also remains constant for all
j > 1

Cj (n) =̇ C(n), ∀j > 1.

For j = 1, it takes some time that variables to be placed into the cache memory

C1(n) ≥ Cj (n) = C(n), ∀j ≥ 1.

Cdis(n) =

TPL(n)∑
j=1

Cj (n) = C1(n) + (TPL(n)− 1)C(n)
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Computational Complexity Analysis

Distributed technique

Number of inequality constraints of the dominating decision maker:{
N(4n + 1), if n ≤ N

2

N(4
⌊

N
2

⌋
+ 2), otherwise

.

⇒

C(n) ∼
{
O(n), if n ≤ N

2
α, otherwise

.

C1(n) = η, TPL(n) = βn

Cdis(n) = C1(n) + (TPL(n)− 1)C(n) ∼
{
O(n2), if n ≤ N

2
O(n), otherwise

.
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Computational Complexity Analysis

Simulation results

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

C
(s

ec
o

n
d

s)

n
 

0 10 20 30 40 50
0

10

20

30

40

50

60

70

T
P

L

n
 

Figure: Left: C(n). Right: TPL(n).

C(n) ≈
{

0.00983n + 0.118 ∼ O(n), if n ≤ 12
0.269, otherwise

. TPL(n) = 1.5n, C1(n) ≈ C1 = 1.36.



Performance, Information Pattern Trade-offs and Computational Complexity Analysis of a Consensus Based Distributed Optimization Method

Computational Complexity Analysis

Simulation results
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Figure: Cdis (n) versus n.

Cdis(n) = C1(n) + (TPL(n)− 1)C(n) (1)

C(n) ≈
{

0.00983n + 0.118 ∼ O(n), if n ≤ 12
0.269, otherwise

. TPL(n) = 1.5n, C1(n) ≈ C1 = 1.36.

Cdis(n) ≈
{

0.0147n2 + 0.167n + 1.242 ∼ O(n2) if n ≤ 12
0.403n + 1.091 ∼ O(n), otherwise

. (2)
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Computational Complexity Analysis

Simulation result
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Figure: Left: Ccen(n). Right: Ccen(n): solid line, Cdis (n): dashed line.

Ccen ≈ (
n

12
)6 ∼ O(n6). (3)
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Future Work

Finding an analytical expression for TPL (and therefore Cdis =
∑TPL

j=1 Cj )

TPL = F (λm,l , πm,l ,PL, p̄, q, l).

Finding an analytical expression for communication overhead: Com

Com = G(p̄, q, l).

Balancing interactions between control,computation,communication, and scalability to
have the best possible performance: good quality control inputs with minimum overall
computation time

min
λm,l ,πm,l ,PL,p̄,q,l

{
Cdis + Com, subject to constraints on λm,l , πm,l , PL

}

PL: Quality of control

λm,l , πm,l : Convergence rate, quality of distributed computation

p̄: Communication pattern

q,l: Scalability architecture
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