Performance, Information Pattern Trade-offs and Computational Complexity Analysis of a Consensus Based Distributed Optimization Method

Alireza Farhadi

in collaboration with M. Cantoni and P. M. Dower

Department of Electrical and Electronic Engineering

The University of Melbourne

October 30, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

Distributed Optimization Method

Computational Complexity Analysis

Future Work

References

Figure: An irrigation network.

Figure: An automated irrigation network via distributed distant downstream feedback control. $z_i(s) = C_i(s)e_i(s), C_i(s) = \frac{K_iT_i s + K_i}{(F_i s + T_i)}, e_i = u_i - y_i.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Figure: An automated irrigation network via distributed distant downstream feedback and feedforward control. $z_i(s) = C_i(s)e_i(s) + f_iv_{i+1}$, $C_i(s) = \frac{K_iT_i s + K_i}{(F_i s + T_i)}$, $e_i = u_i - y_i$.

Figure: An automated irrigation network equipped with a supervisory controller.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure: Computational complexity of the centralized optimization method versus the number of subsystems.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三回 ● 今へ⊙

Distributed supervisory control

Figure: An automated irrigation network equipped with distributed supervisory controller.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Distributed optimization method (problem formulation)

Figure: Two-level architecture for exchanging information between distributed decision makers. $\langle \Box \rangle \langle \Box$

Distributed optimization method (steps¹)

 $N_1 = \{S_1, S_2\}, N_2 = \{S_3, S_4\}$

- Initialization: The information exchange between neighborhoods at outer iterate t makes it possible for subsystem S_i to initialize its local decision variables as h⁰_i = u^t_i, where u⁰_i ∈ U_i are chosen arbitrarily at time t = 0.
- ▶ Inner Iterate: Then, subsystem S_i performs \bar{p} inner iterates as follows: For inner iterate $p \in \{0, 1, ..., \bar{p} - 1\}$, it first updates its decision variable via

$$h_i^{p+1} = \pi_i h_i^* + (1 - \pi_i) h_i^p$$

where

$$\pi_1 + \pi_2 = 1, \ \pi_3 + \pi_4 = 1$$

and

$$\begin{split} h_1^* &= \text{argmin}_{h_1 \in \mathcal{U}_1} J(h_1, h_2^p, h_3^0, h_4^0), \quad h_2^* &= \text{argmin}_{h_2 \in \mathcal{U}_2} J(h_1^p, h_2, h_3^0, h_4^0), \\ h_3^* &= \text{argmin}_{h_3 \in \mathcal{U}_3} J(h_1^0, h_2^0, h_3, h_4^p), \quad h_4^* &= \text{argmin}_{h_4 \in \mathcal{U}_4} J(h_1^0, h_2^0, h_3^p, h_4). \end{split}$$

¹[ACC2010] B. T. Stewart, J. B. Rawlings, and S. J. Wright.

Distributed optimization method (steps)

- Inner Iterate (continued): Then, subsystem S_i trades its updated decision variable h_i^{p+1} with all other subsystems within its neighborhood.
- Outer Iterate: After \bar{p} inner iterates there is an outer iterate update as follows

$$u_i^{t+1} = \lambda_i h_i^{\bar{p}} + (1 - \lambda_i) u_i^t,$$

where

$$\lambda_1 = \lambda_2, \quad \lambda_3 = \lambda_4, \quad \lambda_1 + \lambda_3 = 1.$$

Then, there is an outer iterate communication, in which the updated decision variables u_i^{t+1} are shared between all neighborhoods and subsequently between all subsystems.

Feasibility, convergence and optimality results²

Feasibility: Given any collection of disjoint neighborhoods, above strictly convex finite horizon cost functional J, convex control constraint sets U_i and a feasible initialization (i.e., $u_i^0 \in U_i$), the inner and outer iterates are feasible (i.e., $h_i^{p+1}, u_i^{t+1} \in U_i$).

Convergence: Given any collection of disjoint neighborhoods and a feasible initialization, the strictly convex finite horizon cost functional $J(u_1^t, ..., u_n^t)$ is non-increasing at each outer iterate t and converges as $t \to \infty$.

Optimality: Given any collection of disjoint neighborhoods, a feasible initialization, strictly convex and quadratic cost J, and closed convex control constraint sets U_i , the cost $J(u_1^t, ..., u_n^t)$ converges to the optimal cost $J(u_1^*, ..., u_n^*)$, and the iterates $(u_1^t, ..., u_n^t)$ converge to the unique optimal solution $(u_1^*, ..., u_n^*)$, as $t \to \infty$.

²[AUCC2012]A. Farhadi, M. Cantoni, and P. M. Dower.

Interaction strength decomposition method

Figure: Left: Communication graph. Right: Interaction strength graph summarizing the effects of decision variables on subsystems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

No hopping is allowed for intra-neighborhood communication \Rightarrow Following the communication graph, the size of each neighborhood must be at most 2: Option1: { S_2 , S_3 }, { S_4 , S_5 }, { S_6 , S_1 } Option2: { S_1 , S_2 }, { S_3 , S_4 }, { S_5 , S_6 }

Following interaction strength graph, option 2 is selected.

Interaction strength decomposition method

Dynamic system:

$$S_i: \ x_i[k+1] = A_i x_i[k] + B_i u_i[k] + v_i[k], i = 1, 2, ..., n, k \in \{0, 1, 2, ..., N-1\},$$

where

$$v_i[k] = \sum_{j=1, j \neq i}^n M_{ij} x_j[k] + N_{ij} u_j[k].$$

Transfer function from $U(z) = (U'_1(z) \dots U'_n(z))'$ to state $X(z) = (X'_1(z) \dots X'_n(z))'$ is given by

$$G(z) = V^{-1}(z)W(z),$$

where $V(z) \doteq [V_{ij}(z)]$ with

$$V_{ij}(z) \doteq \left\{ egin{array}{cc} I_{n_i}, & ext{when } i=j \ -(zI_{n_i}-A_i)^{-1}M_{ij}, & ext{otherwise} \end{array}
ight.$$

and $W(z) \doteq [W_{ij}(z)]$ with

$$W_{ij}(z) \doteq \begin{cases} (zI_{n_i} - A_i)^{-1}B_i, & \text{when } i = j \\ (zI_{n_i} - A_i)^{-1}N_{ij}, & \text{otherwise.} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Interaction strength decomposition method

Interaction Strength (IS):

$$IS_{ij} \doteq \begin{cases} 0, & \text{if } i = j \\ \frac{\sigma_{max}(E_{ij})}{\sigma_{min}(E_i)}, & \text{if } \sigma_{min}(E_i) \neq 0 \text{ and } i \neq j \\ \frac{\sigma_{max}(E_{ij})}{\gamma}, & \text{if } \sigma_{min}(E_i) = 0 \text{ and } i \neq j \end{cases}$$

Normalized interaction strength:

$$ISN_{ij} \doteq round\Big(\frac{IS_{ij}}{IS_{min}}\Big), IS_{min} \doteq \min_{\{i,j;IS_{ij}>0\}} IS_{ij}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Interaction strength decomposition method

Example: Consider a system with six interacting scalar subsystems. The aggregated system is described as follows:

$$\begin{split} x[k+1] &= Ax[k] + Bu[k], \\ x[k] &= \begin{pmatrix} x_1[k] & x_2[k] & x_3[k] & x_4[k] & x_5[k] & x_6[k] \end{pmatrix}' \\ u[k] &= \begin{pmatrix} u_1[k] & u_2[k] & u_3[k] & u_4[k] & u_5[k] & u_6[k] \end{pmatrix}', \\ A &= \begin{pmatrix} 1.7049 & -0.0049 & -0.9082 & -0.2732 & 0.5496 & -0.2756 \\ 0.2328 & 1.4672 & -0.0213 & -0.4127 & -0.4861 & 0.5709 \\ 0.1213 & -0.1213 & 0.7311 & 0.0955 & 0.5566 & -0.4652 \\ -0.3836 & 0.3836 & 0.1393 & 1.2061 & 0.132 & 0.198 \\ -0.1148 & 0.11.48 & -0.6754 & 0.007 & 2.3762 & -0.4357 \\ -0.5148 & 0.5148 & 0.0246 & -0.143 & 0.4762 & 1.5143 \end{pmatrix}, \end{split}$$

B = diag(1.7, -1, 1.5, -1.2, 1.9, 0.86).

Interaction strength decomposition method

Interaction strength matrix:

Subsystems	S_1	S_2	<i>S</i> ₃	S_4	S_5	S_6
S_1	0	36	226	3	245	82
<i>S</i> ₂	37	0	21	29	49	27
<i>S</i> ₃	20	12	0	22	182	70
<i>S</i> ₄	93	55	63	0	148	39
S_5	53	31	151	13	0	67
<i>S</i> ₆	106	62	73	1	185	0

Strength weights $(SW(ij) \doteq ISN_{ij} + ISN_{ji}, i \neq j)$

(1,2) = 73	(1,3) = 246	(1,4) = 96	(1,5) = 298
(1,6) = 188	(2,3) = 33	(2,4) = 84	(2,5) = 80
(2,6) = 89	(3,4) = 85	(3,5) = 333	(3,6) = 143
(4,5) = 161	(4,6) = 40	(5,6) = 252	(5,6) = 252

$$N_1 = \{S_3, S_5\}, \quad N_2 = \{S_1, S_6\}, \quad N_3 = \{S_2, S_4\}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Interaction strength decomposition method

Strength weights $(SW(ijk) \doteq ISN_{ij} + ISN_{ik} + ISN_{ji} + ISN_{jk} + ISN_{ki} + ISN_{kj}, i \neq j \neq k)$

(1, 2, 3) = 352	(1, 2, 4) = 253	(1, 2, 5) = 451
(1,2,6) = 350	(1,3,4) = 427	(1,3,5) = 877
(1,3,6) = 577	(1, 4, 5) = 555	(1,4,6) = 324
(1,5,6) = 738	(2,3,4) = 202	(2,3,5) = 446
(2,3,6) = 265	(2,4,5) = 325	(2,4,6) = 213
(2,5,6) = 421	(3, 4, 5) = 579	(3,4,6) = 268
(3,5,6) = 728	(4, 5, 6) = 453	(4,5,6) = 453

$$N_1 = \{S_1, S_3, S_5\}, \qquad N_2 = \{S_2, S_4, S_6\}.$$

Performance criteria

Performance Loss: For a given number of outer iterate updates t and \bar{p} , the Performance Loss $PL_t(\bar{p})$ (measured in percent) is defined as

$$PL_t(\bar{p}) \doteq 100 \Big(rac{J(u_1^t, ..., u_n^t) - \bar{J}}{\bar{J}} \Big),$$

where \overline{J} is the optimal cost.

Total Number of Iterations: For a given \bar{p} ,

 $T_t \doteq \bar{p} \times t$

is referred as the total number of iterations up to outer iterate t.

Total Number of Iterations for Convergence: For a given performance loss PL, let \bar{t}_{PL} be the smallest integer such that

$$PL_t(\bar{p}) \leq PL$$
 for all $t \geq \bar{t}_{PL}$.

Then,

$$T_{PL} \doteq \bar{p} \times \bar{t}_{PL}$$

Illustrative example

Dynamic system:

$$S_i: x_i[k+1] = A_i x_i[k] + B_i u_i[k] + v_i[k], i = 1, 2, ..., 6, k \in \{0, 1, 2, 3, 4\},$$

where

$$\begin{aligned} x_i[0] &= 0, \quad v_i[k] = \sum_{j=1, j \neq i}^6 M_{ij} x_j[k]. \\ \min_{\mathbf{u}} \Big\{ J(\mathbf{x}[0], u_1, ..., u_6), x_i[k] \in \mathcal{X}_i = [-12, 12], u_i[k] \in \mathcal{G}_i = [-6, 6], \forall i, k \Big\}, \\ J(\mathbf{x}[0], u_1, ..., u_6) &\doteq \sum_{i=1}^6 \sum_{k=0}^4 ||x_i[k] - x_i^d||^2 + ||u_i[k]||^2. \end{aligned}$$

$$x_1^d = 1, x_2^d = 2, x_3^d = 3, x_4^d = 4, x_5^d = 5, x_6^d = 6,$$

 $\bar{J} = 9370.89.$

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < ⊙

p	T _{PL}	$PL_t(ar{p})$ at $t=T_{PL}/ar{p}$	Computation time (sec.)
1	453	0.99	77.63
10	820	0.95	142.34
20	1400	0.93	244.93
50	3250	0.98	564.91

Table: Two-neighborhoods case.

p	T _{PL}	$PL_t(\bar{p})$ at $t = T_{PL}/\bar{p}$	Computation time (sec.)
1	424	0.99	74.23
10	2200	0.99	390.14
20	4320	0.98	755.36
50	10750	0.99	1885.2

Table: Three-neighborhoods case.

p	T_{PL}	$PL_t(\bar{p})$ at $t = T_{PL}/\bar{p}$	Computation time (sec.)
1	1020	0.99	179.21
10	10200	0.99	1834.3
20	20400	0.99	3569.9
50	51000	0.99	9027.9

Table: Six-neighborhoods case.

Illustrative example

Figure: Computation time versus the total number of iterations for convergence T_{PL} for different decompositions and PL = 1 percent. Red: The two-neighborhoods case. Blue: The three-neighborhoods case. Blue: The six-neighborhoods case.

Computation time equals γT_{PL} , where $\gamma = 0.175$.

Illustrative example

Figure: Trade-offs between $PL_t(\bar{p})$ and T_t for different decompositions and $\bar{p} = 10$ (top figure) and $\bar{p} = 20$ (bottom figure). Red: The two-neighborhoods case. Blue: The three-neighborhoods case. Black: The six-neighborhoods case.

Illustrative example

Figure: Trade-offs between the total number of iterations for convergence T_{PL} and \bar{p} for different decompositions and PL = 1 percent (top figure) and PL = 10 percent (bottom figure).Red: The two-neighborhoods case. Blue: The three-neighborhoods case. Black: The six-neighborhoods case.

Example:

Inner iterate communication overhead: 1 second

Outer iterate communication overhead: 10 seconds

For the system decomposed into 3 neighborhoods with $\bar{p} = 10$:

Total communication overhead equals $(220 \times 10 + 2200 \times 1 =)4400$ seconds

Total computation time for producing the optimal inputs equals (390.14 + 4400 =)4790.14 seconds.

Without decomposition and inner iterates:

Total communication overhead equals $(950 \times 10 =)9500$ seconds

Total computation time for producing the optimal inputs equals (174.126 + 9500 =)9674.126 seconds.

Figure: An automated irrigation network via distributed distant downstream feedback control. $z_i(s) = C_i(s)e_i(s), C_i(s) = \frac{K_iT_i s + K_i}{(F_i s + T_i)}, e_i = u_i - y_i.$

Automated irrigation network model:

$$S_i: x_i[k+1] = A_i x_i[k] + B_i u_i[k] + F_i d_i[k] + v_i[k], \quad v_i[k] = M_i x_{i+1}[k],$$
$$y_i[k] = C_i x_i[k],$$
$$z_i[k] = D_i x_i[k],$$
$$i = 1, 2, ..., n, k \in \{0, 1, 2, ..., N-1\}.$$

Figure: An automated irrigation network with distributed supervisory controller.

Cost functional:

$$\min_{\mathbf{u}=(\mathbf{u}_1,...,\mathbf{u}_n)} \Big\{ J(\mathbf{x}[0],\mathbf{d},\mathbf{y}_d,u_1,...,u_n), L_i \leq y_i[k], u_i[k] \leq H_i, 0 \leq z_i[k] \leq Z_i, \ \forall i,k \Big\},\$$

$$J(\mathbf{x}[0], \mathbf{d}, \mathbf{y}_d, u_1, ..., u_n) \doteq \sum_{i=1}^n \sum_{k=0}^{N-1} ||y_i[k] - y_i^d||_Q^2 + ||z_i[k]||_P^2 + ||u_i[k] - u_i[k-1]||_R^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Centralized technique (active set method)

Number of decision variables: n_d

Number of inequality constraints: n_c

$$C_{cen}(n_d) \sim \mathcal{O}(n_d^3), \quad (\text{for a given } n_c)^3$$

 $C_{cen}(n_c) \sim \mathcal{O}(n_c^3), \quad (\text{for a given } n_d)^4$

$$\mathcal{C}_{cen}(n_d, n_c) \sim \mathcal{O}(n_d^3 \times n_c^3)^{-5}$$

For automated irrigation networks: $n_d = nN$, $n_c = 6nN$

$$\mathcal{C}_{cen}(n) \sim \mathcal{O}(n_d^3 \times n_c^3) \sim \mathcal{O}(n^6)$$

³[ECC2009] M. S. K. Lau, S. P. Yue, K. V. Ling and J. M. Maciejowski. ⁴[TCST2010] Y. Wang and S. Boyd. ⁵[ECC2009],[TCST2010].

Distributed technique

For synchronized communication:

$$\mathcal{C}_{dis}(n) = \sum_{j=1}^{T_{PL}(n)} \mathcal{C}_j(n),$$

 $T_{PL}(n)$: Total number of iterations for convergence

 $C_j(n)$: Maximum computation time of the decision maker with the dominating computational complexity

Assumption: Distributed decision makers also use active set method for their smaller QPs.

Number of decision variables of each decision maker: N

Number of inequality constraints of the dominating decision maker:

$$\begin{cases} N(4n+1), & \text{if } n \leq \frac{N}{2} \\ N(4\left\lfloor \frac{N}{2} \right\rfloor + 2), & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Distributed technique

For a given n, the dominating decision maker remains constant for all iterations, whereby the dominating computational complexity $C_j(n)$ also remains constant for all j > 1

$$\mathcal{C}_j(n) \doteq \mathcal{C}(n), \quad \forall j > 1.$$

For j = 1, it takes some time that variables to be placed into the cache memory

$$C_1(n) \ge C_j(n) = C(n), \quad \forall j \ge 1.$$

$$C_{dis}(n) = \sum_{j=1}^{T_{PL}(n)} C_j(n) = C_1(n) + (T_{PL}(n) - 1)C(n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Distributed technique

Number of inequality constraints of the dominating decision maker:

$$\begin{cases} N(4n+1), & \text{if } n \leq \frac{N}{2} \\ N(4\left\lfloor \frac{N}{2} \right\rfloor + 2), & \text{otherwise} \end{cases}$$

 \Rightarrow

.

.

$$\mathcal{C}(n) \sim \left\{ egin{array}{c} \mathcal{O}(n), & ext{if } n \leq rac{N}{2} \\ lpha, & ext{otherwise} \end{array}
ight.$$

 $\mathcal{C}_1(n) = \eta, \qquad \mathcal{T}_{PL}(n) = eta n$

$$\mathcal{C}_{dis}(n) = \mathcal{C}_1(n) + (T_{PL}(n) - 1)\mathcal{C}(n) \sim \begin{cases} \mathcal{O}(n^2), & \text{if } n \leq \frac{N}{2} \\ \mathcal{O}(n), & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Simulation results

Figure: Left: C(n). Right: $T_{PL}(n)$.

$$C(n) \approx \begin{cases} 0.00983n + 0.118 \sim O(n), \text{ if } n \leq 12 \\ 0.269, \text{ otherwise} \end{cases}$$
. $T_{PL}(n) = 1.5n, C_1(n) \approx C_1 = 1.36.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Figure: $C_{dis}(n)$ versus n.

$$C_{dis}(n) = C_1(n) + (T_{PL}(n) - 1)C(n)$$
(1)

$$\mathcal{C}(n) \approx \left\{ \begin{array}{cc} 0.00983n + 0.118 \sim \mathcal{O}(n), \text{if } n \leq 12 \\ 0.269, \quad \text{otherwise} \end{array} \right. \qquad \mathcal{T}_{PL}(n) = 1.5n, \quad \mathcal{C}_1(n) \approx \mathcal{C}_1 = 1.36.$$

$$\mathcal{C}_{dis}(n) \approx \begin{cases} 0.0147n^2 + 0.167n + 1.242 \sim \mathcal{O}(n^2) & \text{if } n \leq 12\\ 0.403n + 1.091 \sim \mathcal{O}(n), & \text{otherwise} \end{cases}$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulation result

Figure: Left: $C_{cen}(n)$. Right: $C_{cen}(n)$: solid line, $C_{dis}(n)$: dashed line.

$$C_{cen} \approx \left(\frac{n}{12}\right)^6 \sim \mathcal{O}(n^6). \tag{3}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Finding an analytical expression for T_{PL} (and therefore $C_{dis} = \sum_{j=1}^{T_{PL}} C_j$)

$$T_{PL} = F(\lambda_{m,l}, \pi_{m,l}, PL, \bar{p}, q, l).$$

Finding an analytical expression for communication overhead: Com

$$Com = G(\bar{p}, q, l).$$

Balancing interactions between control,computation,communication, and scalability to have the best possible performance: good quality control inputs with minimum overall computation time

$$\min_{\lambda_{m,l},\pi_{m,l},PL,\bar{p},q,l} \left\{ C_{dis} + Com, \text{ subject to constraints on } \lambda_{m,l}, \pi_{m,l}, PL \right\}$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うへつ

PL: Quality of control

 $\lambda_{m,l}, \pi_{m,l}$: Convergence rate, quality of distributed computation

- **p**: Communication pattern
- q,I: Scalability architecture

[ACC2010]B. T. Stewart, J. B. Rawlings, and S. J. Wright, Hierarchical cooperative distributed model predictive control, *2010 American Control Conference*, pp. 3963-3968, 2010.

[AUCC2012] A. Farhadi, M. Cantoni, and P. M. Dower, Performance and information pattern trade-offs in a consensus based distributed optimization method, *2012 Australian Control Conference*, 2012.

[ECC2009] M. S. K. Lau, S. P. Yue, K. V. Ling and J. M. Maciejowski, A Comparison of interior point and active set methods for FPGA implementation of model predictive control, *Proceedings of the European Control Conference*, pp. 156-161, August 2009.

[TCST2010] Y. Wang ans S. Boyd, Fast model predictive control using online optimization, *IEEE Transactions on Control Systems Technology*, 18(2), pp. 267 - 278, 2010.