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Distributed estimation and control
An active research trend in the control-theory community
! Wireless sensor networks, e.g.,

• fire alarms in forests
• irrigation of large green-houses
• camera networks: surveillance, motion capture

! mobile multi-agent coordination
• robots or drones (Unmanned Aerial Vehicles,
Autonomous Underwater Vehicles, smart cars)

• perform formation control, patrolling, source seeking
! model of animal or social behavior

• opinion dynamics in social networks
• animal flocking and herding
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(Average) consensus

! Problem: all agents need to agree on a value
Moreover, they need to (approx.) compute a given fct. of
initial values, usually the average.

! Why do we care?
• Toy example of distributed task. Hope to get deep
understanding of fundamental limitations, and hints
for further research on more challenging problems

• Building block necessary to perform more
complicated tasks: distributed estimation (e.g.,
Kalman filter, least squares regression), sensor
calibration (e.g., clock synchronization), distributed
optimization, formation control

• Model of social aggregation and flocking
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(Average) consensus continued
! Distributed: agents need to agree in a distributed way

• Simplest scenario: a graph describes allowed
communications. Agents can exchange messages
with neighbors. Time-invariant graph, synchronous
exchanges.

• Imperfection of communication: quantization of
messages, noise, delays

• Randomly time-varying graph (gossip): model for link
failures or randomized algorithm not requiring
synchronization. Edges are activated at random, e.g.,
with independent Poisson clocks.

• State-dependent time-varying graph: model of social
or animal interaction, or mobile robots.
Agents move to the computed position,
graph depends on distances.
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Some references
! Classic book: Bertsekas and Tsitsiklis, Parallel and distributed computation: Numerical

methods, Prentice Hall, 1989

! Classic book (computer science point of view): Lynch, Distributed algorithms, Morgan
Kaufmann, 1997

! Seminal paper (1): Olfati-Saber, Murray, Consensus problems in networks of agents
with switching topology and time delays, IEEE TAC, 2004

! Seminal paper (2): Moreau, Stability of multi-agent systems with time-dependent
communication links, IEEE TAC, 2005

! Book on mobile agents coordination: Bullo, Cortés, Martínez, Distributed Control of
Robotic Networks, Princeton, 2009

! Survey on consensus in distributed estimation or control: Garin, Schenato, A survey on
distributed estimation and control applications using linear consensus algorithms, in
Networked Control Systems, Springer LNCIS, 2011

! Survey on gossip: Dimakis, Kar, Moura, Rabbat, Scaglione, Gossip algorithms for
distributed signal processing, Proc. of the IEEE, 2011

! Survey on opinion dynamics: Acemoglu, Ozdaglar, Opinion dynamics and learning in
social networks, Dynamic Games and Applications, 2011
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Linear Average Consensus (discrete-time LTI)
! Simple setting: time-invariant communication graph,
perfect and synchronous communication

! Discrete-time linear algorithm:
State update = convex combination of neighbors’ states
xu(t) =

∑

v Puvxv(t)

Can use only neighbors’ states: Puv = 0 if u ! v.
! In vector notation:

x(t + 1) = P x(t)

! Design of P :
• consistent with the graph: Puv = 0 if u ! v.
• doubly-stochastic: Puv ≥ 0, row-sum=column-sum=1
• primitive (strongly connected and aperiodic graph)
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Classical performance analysis

From Markov chains literature, Perron-Frobenius theorem
! Assume:

• P primitive (strongly connected and aperiodic graph);
• P doubly-stochastic: Pij ≥ 0 ∀i, j, 1TP = 1T , P1 = 1

! Eigenvalues of P :
• 1 with multiplicity 1;
• |λ| < 1 for all other eigenvalues

! lim
t→∞

x(t) = 1
N

∑

i xi(0)

! speed of convergence: ρt
ess

where ρess = 2nd largest eigenvalues’ modulus
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New performance indices

! Why?
• different costs describe different objectives
(consensus used in different contexts)

• in large-scale networks, tools for choosing the correct
scaling of N = # nodes and t = time (number of
iterations)

! What index?
• LQ cost (#2-norm of transient);
• quadratic estimation error in averaging measures;
• quadratic error in distributed Kalman filter
• . . . (taylored to your problem!)
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LQ cost (#2-norm of transient)

! Consensus algorithm x(t + 1) = Px(t)

! Initial condition x(0) = random variable
E[x(0)] = 0 and E

[

x(0)xT (0)
]

= I

! Transient performance evaluation by #2-norm
JLQ(P ) := 1

N

∑

t≥0 E‖x(t) − xave1‖2 xave = 1
N

∑N
i=1 xi(0)

! JLQ(P ) = 1
N

∑

t≥0 trace
[

(P t − 1
N
11T )T (P t − 1

N
11T )

]

If P is normal (e.g. symmetric), with notation λ1 = 1

JLQ(P ) = 1
N

N
∑

i=2

1

1 − |λi|2
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Other reasons to study the LQ cost

The same cost arises from different problems
For example:
! Consensus with noise in the state update:

x(t + 1) = Px(t) + n(t)

Cost = asymptotic variance of distance from consensus
[Xiao, Boyd, Kim, Distributed average consensus with least mean
square deviation, J. Parall. Distrib. Comp, 2007]

! Formation control (platooning)
Cost = formation coherence
[Bamieh et al, Coherence in large-scale networks: Dimension
dependent limitations of local feedback, TAC 2010]

– p. 10/30



Quadratic error in distributed estimation

N sensors measure same y ∈ R + indep. noises:
xi(0) = y + wi ∀i = 1, . . . , N

indep. noises w1, . . . , wn, average = 0, variance= 1

! Best estimate of y: the average ŷ = 1
N

∑N
i=1 xi(0)

Compute ŷ with consensus: x(t + 1) = P x(t)

! Cost = average quadratic error
Je(P, t) = 1

N
E
[

e(t)Te(t)
]

, ei(t) = xi(t) − y

! Je(P, t) = 1
N

trace
[

(P T )tP t
]

If P is normal (e.g. symmetric)

Je(P, t) = 1
N

∑N
i=1 |λi|2t
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Other costs

! Average distance from consensus in the presence of
quantization or noise

! estimation or prediction error in distributed Kalman filter
. . .

See book chapter:
F. Garin and L. Schenato, A survey on distributed estimation and control
applications using linear consensus algorithms, in “Networked Control
Systems”, Springer LNCIS, 2010

– p. 12/30



Example: contrasting performance indices

Toy example where ρess very bad, estimation very good:
2 disconnected complete graphs of n = N/2 nodes each.

P =

[

1
n
11T 0

0 1
n
11T

]

! eigenvalues: 1 with multipl. 2, 0 with multipl. N − 2

! NO convergence! (disconnected graph, ρess = 1)
! Estim. error: Je(P, t) = 1

N

∑

i |λi|2t =
2
N

∀t ≥ 1

Almost as good as optimal centralized estimation
(variance of ŷ= 1/N ).
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Consensus and spectral graph theory

! Choice of coefficients also matters, but
many properties depend on the graph.

! Spectral graph theory studies eigenvalues of matrices
associated with graphs (Adjacency, Laplacian)

! Most literature focused on spectral gap = 1 − ρess(P ).
Very interesting results: spectral gap related to a
geometric property (expansion).
There exists expander graphs, with non-vanishing spectral gap
(ρess(P ) bounded away from 1) despite bounded number of
neighbors

! We consider costs depending on all eigenvalues.
Must find new results
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Consensus and Markov chains

! Doubly-stochastic matrix P ↔
Markov chain with uniform invariant measure

! Costs describing consensus performance can be
interesting for Markov chains.
For example, if P is symmetric

JLQ(P ) = 1
N

(

average first hitting time of P 2
)

Average first hitting time = 1
N2

∑

u,v Euv

Euv = E
(

min{t ≥ 0 : Xt = v}
∣

∣X0 = u
)

Xt Markov chain with transition matrix P 2
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Our goals

! Understand effect of graph topology on performance

! Study large scale graphs

! Understand the effect of local interactions:
• bounded number of neighbours;
• some geographical notion of near neighbours
(e.g., exclude De Bruijn and other expander graphs,
small-word networks etc., because they require some
long-range communication)

• towards a realistic model for sensor networks, even if
starting from simplified examples
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Simple local communication: circular graph

1/3 1/3

1/3

1/3

1/3

1/3

1/3

1/3 1/3

1/3 1/3

1/3
1/31/3 1/3

1/3

P =





















1/3 1/3 0 0 0 0 0 1/3

1/3 1/3 1/3 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0 0

0 0 1/3 1/3 1/3 0 0 0

0 0 0 1/3 1/3 1/3 0 0

0 0 0 0 1/3 1/3 1/3 0

0 0 0 0 0 1/3 1/3 1/3

1/3 0 0 0 0 0 1/3 1/3





















! eigenvalues: λh = 1
3
+ 2

3
cos(2π

N
h), h = 0, . . . , N−1

! 2nd largest |λ|: ρess → 1 as 1 − c
N2

! LQ cost: JLQ(P ) ( N

! Estim. error: Je(P, t) ( max
(

1
N
, 1√

t

)

→ 0
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Grids (on d-dimensional tori and cubes)
! Generalization of circles:

grid on d-dim. torus
(Abelian Cayley graph)

grid on d-dim. cube
(project. of torus [Boyd et al.])

! 2nd largest |λ|: ρess → 1 as 1 − c
N2/d

! LQ cost:
JLQ(P ) = 1

N

∑

λ %=1

1

1 − |λ|2
(











N if d = 1

logN if d = 2

1 if d ≥ 3

! estim. error: Je(P, t) = 1
N

∑

λ |λ|2t ( max
(

1
N
, 1

td/2

)
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Why Cayley graphs and grids? What’s next?

! Why?
• Elegant mathematical framework:
Fourier transform on Abelian groups (general. DFT),
explicit expression for eigenvalues.

• Example of geographically local interactions
! More realistic models of sensor networks:

• Random geometric graphs
• (Deterministic) perturbations of regular grids
Question: are the scaling laws mostly due to the
symmetries, or to some notion of geographically local
interaction in d-dimensional Euclidean space?
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Random geometric graphs

! Introduced [Gilbert ’63], model for wireless sensor
networks [Franceschetti, Meester ’07]

! Probabilistic model:
• N points unif. at random within a cube ⊂ Rd

• bi-directional edge within points at distance ≤ r
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Random geometric graphs (continued)

! From our simulations:
same behaviour as grids for our quadratic costs
(connected realizations of random geom. graphs with constant
average degree)

! Mathematical results:
• Well-studied: connectivity threshold (percolation)
[Penrose book 2003]

• Few results on spectrum:
for simple random walk, above connect. threshold
◦ ρess → 1 same as grid [Boyd et al. ’06]
◦ spectral density concentrates to the grid’s
[Sanatan Rai, PhD thesis, 2005]
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Deterministic geometric graphs

! Perturbation of regular grids. Not trivial!
• Not classical matrix perturbation analysis:
not continuous variation of all matrix entries,
but significant modification of few entries
(e.g., cutting one edge = zeroing one entry)

• Modifying few edges might significantly change
performance (e.g., if disconnects graph)

! F. Fagnani (Polit. Torino), G. Como (Lund) and
J.-C. Delvenne (Louvain) study ‘democracy’ of Markov
Chains: how perturbations influence invariant measure,
i.e. left eigenvector of eigenvalue 1

! We assume: modified P remains
primitive (str. connected graph)
and symmetric (⇒ uniform inv. measure)
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A powerful tool
Equivalence:
reversible Markov chains ↔ resistive electrical networks
! Introduced:

a[Doyle, Snell, Random Walks and Electric Networks, book, 1984]
Recently used in distributed estimation and control:
a[Barooah, Estimation and control with relative measurements:
algorithms and scaling laws, PhD thesis, UCSB, 2007]
a[Ghosh, Boyd, Saberi, Minimizing eff. resist. of a graph, SIAM ’08]

! For the symmetric case:

P symmetric
stochastic
matrix

↔

electrical network:
• graph associated with P ;
• on edge (u, v), resistance

Ruv = 1/Puv.
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Effective resistance: definition

Effective resistance between nodes u, v in the network:

u v

current 1A current 1A

equivalent to:

u v

current 1A current 1AReff
uv

i.e., Reff
uv = Vv − Vu.

Simple examples:

R1 R2

Reff = R1 + R2

R1

R2

Reff = R1R2

R1+R2
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Why do we care about effective resistances?

We study the cost

JLQ(P ) = 1
N

∑

t≥0

trace
(

P 2t − 1
N
11T

)

Construct the electrical network associated with P 2.
Then:

JLQ(P ) = 1
N2

∑

u,v

Reff
uv

Cost JLQ(P ) = average effective resistance R̄eff .
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Why do we care about effective resistances? (2)

! Properties of the effective resistances:
• Monotonicity: if you add an edge, or if you decrease
the resistance on an existing edge, then all effective
resistances in the network will be decreased or same.

• Scaling: if all resistances are multiplied by α, then all
effective resistances are multiplied by α.

! Bound on eff. resist. using eff. resist. of ‘similar’ network.
This is the tool we need to study JLQ(P ) = R̄eff of
perturbed grids!
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Deterministic geometric graphs
Geometric graph:
[Barooah, PhD th. ’07], [Lovisari, Zampieri, Annual Reviews in Control ’12]

! vertices = points in Rd

! 5 geometric parameters:

!

γ

r s

◦ # = edge of hypercube
containing all nodes;

◦ s = min. Euclidean
dist. between two nodes;

◦ r = max. Euclidean
dist. between two nodes;

◦ γ = radius of largest
empty ball;

◦ ρ = minimum ratio
graphical dist. / Euclid. dist.
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Geometric graphs behave like grids

Theorem:
P symm. stoch. primitive, associated with geom. graph G
⇒ ∃ two grids L1 and L2 (with the same dimension) s.t.

c1R̄
eff(L1) ≤ JLQ(P ) ≤ c2R̄

eff(L2)

c1, c2 depend only on the geometric parameters of G and on
min and max non-zero entries of P .

≤≤

R̄eff(L1) J(P ) R̄eff(L2)
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Geometric graphs behave like grids (2)
c1R̄

eff(L1) ≤ JLQ(P ) ≤ c2R̄
eff(L2)

! c1, c2 depend only on the geometric parameters of G and
on min and max non-zero entries of P .
Interesting case: c1, c2 indep. of N , size of L1, L2 ( N

i.e., G roughly looks like d-dimensional grid
! Recall assumed P primitive and symm.
Can generalize: reversible Markov chain + assumption
on inv. meas. (stronger than ‘democratic’: all entries ∼ c/N )

! restrictive assumptions, but easy to find suitable graphs
and construct symm. P e.g. with Metropolis weights

! such examples show that grid’s performance is due to
local interactions (bounded number of neighbours +
bounded distances), not to symmetries
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Conclusion

! Different performance indices for consensus algorithm
[Garin, Schenato, book chapter, 2011]

! We study performance in large-scale ‘geometric’ graphs:
• rigorous results for regular grids
[Garin, Zampieri, SIAM J. Contr. and Opt. 2012]

• simulations: random geom. graphs behave as grids
[Carli, Garin, Zampieri, ITA Workshop’09]

• a class of deterministic geometric graphs behave as
grids
[Lovisari, Zampieri, Annual Reviews in Control, 2012]
[Lovisari, Garin, Zampieri, CDC’10 and submitted SICON]

http://necs.inrialpes.fr/people/garin/publications

http://automatica.dei.unipd.it/people/lovisari/publications.html
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