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Formation Control Problem

e In general, it is a hard problem
* How to design controllers?
* How to design the information graph?

e How do we choose the leaders?

e In this talk, we focus on performance limitations



Results in a Nutshell

* We focus on the sensitivity of the agents’ position with respect to an external
disturbance

* Generalize Bode integral formula for SISO systems to distributed systems

— Fundamental limitation that holds for any plant

* TFocus on the stochastic setting and make use of information-theoretic tools

Information Theory



Car Platoon Systems

Automated Highway Systems

Spacing Spacing Spacing
error | error 2 €rrorT 1



Related Literature

e Stability analysis

— Chu (1974), Peppard (1974), Swaroop and Hedrick (1996)

Predecessor
following
strategy

Fig. 5. Time domain plots of spacing errors with the predecessor following

strategy.

* Disturbance propagation performance

— Seiler, Pant, and Hedrick (2004), Middleton and Braslavsky (2010)
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Fig. 6. Time domain plots of spacing errors with the predecessor and leader
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following strategy.

Predecessor
and leader
following
strategy

e These previous works focus on specific plants and controllers. We provide
fundamental performance results that hold for any plant



Outline

Bode Integral formulae for SISO plants
— Deterministic

— Stochastic

Generalization to platoon systems under predecessor following strategy
— Deterministic

— Stochastic

Extensions to the leader and predecessor following strategy

Concluding remarks



Bode Integral Formula: Sensitivity

Reference Initial condition
Disturbance ErrOr Controller Contr()l Process Output
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* Sensitivity function (from disturbance to error):

1
o | log 1S(w)|dw = Z log |\
reu
Unstable poles

* This limitation holds for any LTT control
* Application of Jensens’ formula in complex analysis

« [Extensions of Bode formula for LTT systems
— Freudenberg and Looze (1985), Freudenberg and Looze (1988)
— Mohtadi (1990), Chen (1995)



Bode Integral Formula: Complementary Sensitivity

Reference Initial condition

Disturbance Error Controller Contr()l Process ()utput
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» (Complementary sensitivity function (from disturbance to output):

1 T
— log |T'(w)|dw = Z log |5| + Z log | 8’| + log |GD|
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Unstable plant/controller Plant/controller gain
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* Controller plays a role now

« If Kand P are minimum phase, then the limitation 1s only given by the loop gain



Bode Integral Formula and Information Theory

e Szego’s limit theorems for Toeplitz matrices:

Transfer function €

Disturbance _i» ( ) |5 Lrror
S(w

1) Stochastic disturbance through a linear stable filter with transfer function S

R(e) — h(d) = 2i /W log |S/(w)|duw

™ — 7T

2) If d and e are WSS process with power spectral densities P (w) and P (w)

Po(w) = |SW)*Paw) =) S(w)= = Sed(w)

B 1 (™
h(x) < —/ log 2me P(w)dw
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Related Literature

* (Connections between Bode Integral formula and information theory

Iglesias (2001): Nonlinear control

Zhang and Iglesias (2003): Nonlinear control

Elia (2004): Stabilization and Gaussian feedback capacity

Martins, Dahleh, and Doyle (2007): Bode formula with disturbance preview
Martins and Dahleh (2008): Stochastic Bode formula

Okano, Hara, and Ishu (2009): Complementary sensitivity

Ishii, Okano, and Hara (2011): Stochastic Bode formula MIMO case

Yu and Mehta (2010): Nonlinear control

Ardestanizadeh and Franceschetti (2012): Gaussian channels with memory



Stochastic Bode Integral Formula: Sensitivity

Reference Stochastic I (O)

Gaussian WSS Process >éErmr Controller Control Process Output
»
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K P
e Martins and Dahleh (2008):

1 T
o | log S(w)dw > Zlogw
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 This limitation holds for any 2*¢ moment stabilizing control (including nonlinear)

e The disturbance and x(0) are independent



Stochastic Bode Formula: Complementary Sensitivity

Reference Stochastic I (O)

Gaussian WSS Process Error | Controller Control Process Output
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* Okano, Hara, and Ishui (2009)

1 s
o | log | T (w)|dw > élog 18| +log |GD)|
Unstable plant zeros Plant/controller gain

e This limitation holds for any 2 moment stabilizing [T control
e The disturbance and x(0) are independent
* K’szeros are not present because the initial condition is assumed deterministic

e If Pis minimum phase or if’ x(0) is deterministic then the limitation is only given

by the loop gain



Stochastic Bode Formula: Complementary Sensitivity

* Proof based on bounds on the entropy rates
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* The unstable zeros are the poles of the inverse systems, which are related to the
eigenvalues of the system matrix



Outline

Bode Integral formulae for SISO plants
— Deterministic

— Stochastic

Generalization to platoon systems under predecessor following strategy
— Deterministic

— Stochastic

Extensions to the leader and predecessor following strategy

Concluding remarks



Leader-Follower Platoon Control: Problem Setup
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* Disturbance d is a WSS Gaussian process

* disindependent of the initial conditions

e The initial conditions form a Markov sequence z¢(0) = z1(0) — ... = 2,;(0)

* (losed loop systems are stable and steady state analysis (all processes are WSS)

* Sensitivity of the i-th spacing error e; to the stochastic disturbance




Platoon System: Deterministic Setting

* The transfer function from d to e factorizes as

; 5 Q
i‘él‘}ﬂ' K, Uo P, Yo éﬂ' K, Uy P, 3Jl'  Yia " €i K, (A P Yi R
T() Tl Sz

* Hence, combining the Bode integral formulae for deterministic SISO systems

BELUZ

1—1
1 7T
5 |, gl @)l = 3 ( D logf+log(GiDy) ) + 2 log A

Unstable zeros Loop gain Unstable poles

* Holds for any stable LTT controller at the i-th follower



Platoon System: Stochastic Setting
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*  We could follow a similar modular approach

i " log Sz(w)dw > B(ez) - B(d)

2 ) _ .

= h(ei) — h(yi—1) + h(yi—1) + - + h(yo) — h(d)

* And then apply the results by Martins and Dahleh (2008) and Okano, Hara, and
Ishi (2009)

* However, these results require independence between the disturbance and the
plant initial condition and the result on the complementary sensitivity requires
L'1T controllers.



Main Result
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e [If the controllers are L'TT:

1 /7 i—1

or | log S;(w)dw > ;log(GlDl) + ); log [A|

Loop gain Unstable poles

* No unstable zeros at the predecessors’ controller/plant:
1. The controller initial conditions are deterministic

2. The plant initial conditions are correlated: In the worst case scenario they
are fully correlated and deterministically known



Remarks

» Consistent with deterministic case if all closed-loop systems are minimum phase

* It can be tight in non-trivial cases, e.g., when all processes are jointly Gaussian
for some suitably chosen linear controllers

* It can be extended to the case where the controllers are nonlinear (but
differentiable and one-to-one):
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* (onsequence of the scaling property of differential entropy:

h(¢(z)) = E(¢'(z)) + h(z)



Leader-Predecessor Following Strategy

Video camera on windscreen detects
traffic lights and moving traffic

Rotating sensor on
roof generates 3D
map of surroundings

Radar sensors - three at the front and one at the back
help determine position

e A RN THES BV T S A ey TEULY }f»‘

r to take over in an emerge
software

e Suppose that the leader can send information to each follower over finite
capacity channels
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Communication Channels

e The leader channel output is communicated to the i-th follower, 1=2.3,..., over a
communication channel of finite Shannon capacity C.

Channel — Capacity G,

< < -

e [If the controllers are L'TT:

_ logS Z log GlDl l)+ + Z 10g|)\‘ —
=0 AEU;

e The right hand side reduces thanks to the disturbance preview

* There is a saturation effect: The reduction is no greater than the loop gain



Numerical Example

Specific Gaussian setting where the sensitivity can be evaluated analytically
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Concluding Remarks

* Two approaches have been followed to study performance limitations

Deterministic

Stochastic

Approach
Tools

Assumptions

Frequency domain
Complex Analysis

1. Transfer function must exist

2. LTI controllers

Time domain

Information theory

1
2.
3.
4

. WSS processes

28d moment stable plants
Stochastic 1nitial conditions
Disturbance and initial conditions
are independent

* We have followed the stochastic approach to provide performance bounds in
one-dimensional formation control problems

e JImmediate extension to trees

* (Currently working on graphs with loops

* (Communication graph vs sensing graph



