Vinith Misra, Tsachy Weissman {vinith, tsachy}@stanford.edu

Fun with Porosity and Aliens! (in channel coding)

LCCC Focus Period on Information and Control in Networks

Outline

Universality!

- Universal source coding!
- Universal channel coding?
- Universal channel *decoding*!
 - Traditional formulations!
 - Aliens!

Universal channel coding, with feedback!

(Lossless) Source Coding

(Lossless) Source Coding

- Known source model!
- Encoder/Decoder optimized for source.

Universal Source Coding

- Encoder and decoder can adapt.
- Strong sense of universality: optimal compression for *every* source model.

Channel Coding

Channel Coding

- Relevant component: channel model π .
- Codebook/Decoder can be optimized for given π .

Universal Channel Coding

- Encoder cannot adapt.
- Decoder *might* adapt.

Universal Channel DeCoding

Outline

Universality!

- Universal source coding!
- Universal channel coding?
- Universal channel *decoding*!
 - Traditional formulations!
 - Aliens!

Universal channel coding, with feedback!

The max mutinf (MMI) decoder

MMI: maximize $I(X;Y)_{\hat{p}^{(i)}(X,Y)}$

Codebook universality?

- Extreme universality: decoder doesn't know code!
- "Communicating with Aliens" --- Sudan et al.
- Eavesdropping, robustness, adaptive encoder...

Codebook universality, in 4 parts

1: Guess the message map?

Pattern Decoding

- Fundamental ambiguity.
- Decode "pattern" of message (Orlitsky et al.).
- Alternatively: minimum context is $log(2^{nR}!)$ bits.

2: Guess the blocklength!

Look for independence!

M: id | 0 | ... $X^{n}: id | 000 | 1 | \rightarrow \mathbb{T} \rightarrow 101000110...$ $10000110...; \hat{n}=n => \gamma^{\hat{n}}; id$ $|0|000||0...: \hat{n} < n \implies \gamma^{\hat{n}}$

3: Guess the rate!

Idea: clustering

4: Guess the decoding regions!

Dirty MMI Decoding:

Choosing a dirty codebook (DC)

 $\rightarrow \pi(Y|X) \rightarrow Y_{cis} Y_{cis} \cdots Y_{(n^{n})}$

- Choose at random!
- Filtered DC (FDC): smallest uniquely decoding sub-DC.

Works!

Aliens, in review:

 Universal pattern decoding for random codes!

 Conj: possible for deterministic codes with positive error exponent.

(I lied! m-tuple version of decoder required.

Outline

Universality!

- Universal source coding!
- Universal channel coding?
- Universal channel *decoding*!
 - Traditional formulations!
 - Aliens!

Universal channel coding, with feedback!

Universal Channel Coding

- Encoder cannot adapt.
- Decoder *might* adapt.

Feedback to the rescue?

- Encoder and decoder can adapt.
- Stronger form of universality?
- (More fundamental channel coding problem?)

Modulo-additive channels

- Stronger analogy with source coding.
- Source process <-> Noise process.
- More general: individual noise sequence.

"Porosity," or $\sigma(z)$

How rapidly can encoder/decoder communicate?
Best possible rate: σ(z).

Individual sequence properties

Compressibility: (Lempel/Ziv)

Predictability: (Feder/Merhav/Gutman)

Denoisability: (Weissman et al.)

LZ Parallel #1: Individual sequences

LZ Individual source sequence

Porosity Individual noise sequence

LZ Parallel #2: Finite-state encoding/decoding

LZ Finite state source encoder and decoder

Porosity Finite state channel encoder and decoder

LZ Parallel #3: Finite-state converse

LΖ

FSM can compress no better than compressibility.

Porosity FSM can transmit no faster than porosity.

$$\rho(x) = \overline{\lim}_k \overline{\lim}_n \widehat{H}_k(x^n) \qquad \qquad \sigma(z) = ?$$

LZ Parallel #4: Universal achievability schemes

LZ Sequence of FS schemes. (simple!)

Porosity Sequence of FS schemes. (not simple!) Suboptimal FS schemes (simple!)

Lomnitz/Feder (2011)

- Competitive universality introduced.
- Rate-adaptive scheme achieves $1 \rho(z)$.
- No "iterated fixed-blocklength" scheme does better.

Shayevitz/Feder (2009)

Achieves first-order "empirical capacity." $R_n \approx 1 - \widehat{H}_1(z^n)$

• Can generalize to m-order empirical capacity. $R_n \approx 1 - \widehat{H}_m(z^n)$

 Related: Eswaran/Sarwate/Sahai/Gastpar [2010].

Finite-state (FS) schemes

Suppose an FS scheme achieves rate R and error ϵ with positive probability.

Then $R < 1 - \rho(z) + h_b(\epsilon)$.

i.e. $\sigma(z) = 1 - \rho(z)$.

Achievability

There exists a sequence of FS schemes $\{\mathcal{F}_m\}$

such that
$$(R_m, \epsilon_m) \rightarrow (\sigma(z), 0)$$

for all noise sequences \mathcal{Z} .

Channel Coding into Source Coding

Channel Coding into Source Coding

Channel Coding into Source Coding

Deterministic into Stochastic

Cthulhu vs. Shannon.

Cannot beat 1 bit per sample.

A linear-complexity alternative

 LZ-based universal predictor. (Feder et al. [92])

<u>1st order</u> S/F scheme

A linear-complexity alternative

 LZ-based universal predictor.
 (Feder et al. [92])

<u>1st order</u> S/F scheme

Performance?

Universal Channel EnCoding

- Codebook hard-wired.
- Compound channel approach: optimize for worst-case channel.
- Bayesian approach: assume distribution on possible channels.