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Motivation: In-cell Commnunication

Two nodes want to communicate within a cell.
Provider does not allow direct communication.

Uplink: Messages send & decoded at basestation (MAC).
Advanced downlink: (Partial) messages cognition at receiver.
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Basic Idea of Network Coding

A B

A B

A B?

wants B wants A

? ?

Example: Butterfly Network
Problem: Bits A and B should be
transfered.
Constraint: Each P2P link has 1
bit capacity.

Routing: Forward A and B
) Two channel uses!
Network coding: Forward A � B
) One channel use!

Network coding: Ahlswede et al, “Network Information Flow” T-IT 00.
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Basic Idea of Network Coding

A B

A B

A BA  B

wants B wants A

A  BA  B

Example: Butterfly Network
Problem: Bits A and B should be
transfered.
Constraint: Each P2P link has 1
bit capacity.
Routing: Forward A and B
) Two channel uses!
Network coding: Forward A � B
) One channel use!

Idea: Allow computation at nodes!

Paradigm Shift
Information flows , incompressible
fluids!

Network coding: Ahlswede et al, “Network Information Flow” T-IT 00. 5 / 33



Bidirectional Relaying

Two nodes want to exchange messages with the help of a relay.
For scenarios where the direct link is not good enough!
Half-duplex assumption: Nodes can either transmit or receive.

1 R 2
2M

1M

M

M2

1

Different processing strategies at relay node:
amplify-and-forward, decode-and-forward (here),
compress-and-forward, compute-and-forward, ...
optimal strategy unknown
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Bidirectional Broadcast Channel

Restricted decode & for-
ward bidirectional relaying

1. Phase: MAC [Ahlswede ’71]

2. Phase: BiBC: BC with RX
message cognition

B i d i r e c t i o n a l
B r o a d c a s t  C h a n n e l

2
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R

P Y   Y   | X
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R 1 2

R
M 2M 1
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Bidirectional Broadcast Channel

DM-BiBC capacity region
[T-IT ’08]
Union of all [R

1

,R
2

] over pXR :

0  R
1

 I(XR; Y
1

)

0  R
2

 I(XR; Y
2

)

Proof ideas:

Coding which combines
information flows at relay
(network coding idea).

Converse: Take side
information into account.

B i d i r e c t i o n a l
B r o a d c a s t  C h a n n e l
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R
M 2M 1
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Gaussian Multi-Antenna Bidirectional Relaying

NR N2
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Capacity Region [ISIT ’08]

C
BC
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[

tr QP, Q⌫0
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+ : R
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⇣
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Transmit Covariance Optimization Problem

Boundary characterized by

arg max

tr QP,Q⌫0

2

X

i=1

wi log det

⇣

INi+
1

�2

HH
i QHi

⌘

w Convex opt. problem!
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Closed form results/procedures are available:
MISO case [T-SP ’09]

Rank one optimality of transmit covariance matrix Q.
MIMO case [T-COM ’09]

Generalized water-filling solution for high SNR and
non-degenerate channels ((HiHH

i )

�1 exists)
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Lesson learned so far

Paradigm shift
Information flow , fluids.

Communication principle: Convey as much information to the
receiving nodes which allows them to conclude on the message
using their side information.

) Bidirectional broadcast channel:
Single information flow used by both users.
Trade-off: Optimal input distribution need not be optimal for
both users (vector optimization problem).
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Channel Coding with States

Channel coding with states known non-causally at the encoder
[Gel’fand, Pinsker ’80]

C = max

PX|U,SPU|S
[I(U; Y) � I(U; S)] (� max

PX|U,SPU
I(U; Y))

Extension to broadcast channel with state [Steinberg ’05] and
[Steinberg, Shamai ’05]

Capacity result for degraded case.
General case open - similar results as for BC
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Bidirectional DMBC with Random States

decoder
1

n W

X
n

encoder

channel state

Y,Z|S,X
DMBC

Y

Z
V

decoder
2

n

source

source

S
g (v,y  )

f(v,w,s  ) P

g (w,z  )W

V

Definition: DMBC with random states

P
Y
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(yn, zn|sn, xn
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YZ|SX

(yi, zi|si, xi), Pn
S

(sn
) =

n
Y

i=1

P
S
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Achievable Rate Region
Extension of Gel’fand Pinsker coding results for BC with
receiver side information (bidirectional BC) [accepted T-IT]:

Achievable Rate Region
Convex hull of the set of all rate pairs [R

1

,R
2

] such that

R
1

 [I(U; Y) � I(U; S)]+ , R
2

 [I(U; Z) � I(U; S)]+

for some U � (X,S) � (Y,Z) with pX|US deterministic and
|U|  |S||X| + 1 sufficient.

Trivial Outer Bound
Set of all rate pairs [R

1

,R
2

] such that

R
1

 max

PU,X|S
[I(U; Y) � I(U; S)] , R

2

 max

PU,X|S
[I(U; Z) � I(U; S)]
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Sketch of coding scheme

Random codebook: Generate 2

n(R
1

+R
2

+ ˜R) iid sequences
un

(v,w, `) ⇠ P
U

, 1  v  2

nR
1 , 1  w  2

nR
2 , 1  `  2

n ˜R.
Encoding: To send (v,w) after observing sn look for some
` : (un

(v,w, `), sn
) 2 T (n)

" (P
US

).
Probability of success tends to one with n if ˜R > I(U; S).

Decoding: Decoder g
1

knows v and searches for a unique pair
(

ˆw, ˆ`) such that (un
(v, ˆw, ˆ`), yn

) 2 T (n)

" (P
UY

).
Probability of failure vanishes with n if R

1

+ ˜R < I(U; Y).
Likewise, decoder g

2

knows w and searches for a unique pair
(

ˆv, ˆ`) such that (un
(

ˆv,w, ˆ`), zn
) 2 T (n)

" (P
UZ

).
Probability of failure vanishes with n if R

2

+ ˜R < I(U; Z).
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Channel State additionally known at Decoder one

Capacity Region
Set of all rate pairs [R

1

,R
2

] such that

R
1

 I(X; Y|S), R
2

 I(U; Z) � I(U; S)

for some U � (X,S) � (Y,Z) with pX|US deterministic.

Equivalent representation of region (crucial):
Consider output ˜Y = (Y,S)

I( ˜Y; U) � I(S; U) = I(Y,S; U) � I(S; U) = I(Y; U|S)

Since pX|US deterministic) X � (U,S) � Y, we have

I(U; Y|S) = I(X,U; Y|S)� I(X; Y|U,S)

|       {z       }

=0,X�(U,S)�Y

= I(X; Y|S)+ I(U; Y|X,S)

|       {z       }

=0,U�(X,S)�Y

= I(X; Y|S)

Previous gives achievability; standard arguments the converse
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Scalar Complex Gaussian Channel

Y = X + S +N
1

, Z = X + S +N
2

Power constraint E{X2}  P

State S ⇠ CN(0,Q) and channel noise Ni ⇠ CN(0, �2

i ), i = 1, 2.

Costa’s choice of RV U = X + ↵S, X ⇠ CN(0,Q), X ? S:

Ri(↵) = log

0

B

B

B

B

@

P(P +Q + �2

i )

PQ(1 � ↵)

2 + �2

i (P + ↵2Q)

1

C

C

C

C

A

,

maximized at ↵⇤i = P/(P + �2

i ), i = 1, 2.

Remark: If �2

1

, �2

2

then ↵⇤
1

, ↵⇤
2

...
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Channel State additionally known at Decoder one

Capacity region
Set of rate pairs [R

1

,R
2

] such that

R
1

 R
1

(↵⇤
2

) =I(U; X + S +N
1

|S)

=I(X + ↵⇤
2

S; X +N
1

|S)

=I(X; X +N
1

) = log

⇣

1 + P/�2

1

⌘

,

R
2

 R
2

(↵⇤
2

) =I(X; X + S +N
2

|S)

=I(X; X +N
2

) = log

⇣

1 + P/�2

2

⌘

.

On each link the AWGN single-user capacity can be achieved.
) Capacity region
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Illustration
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add. one decoder knows state
encoder knows state only
α=P/(P+σ1

2)

α=P/(P+σ2
2)

If only the encoder knows channel state sequence, than each
single-user capacity is achievable, but not simultaneously.
If additionally one decoder knows the channel state sequence,
both user can simultaneously achieve single-user capacity
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Looking backward, looking forward

Backward:
2-user broadcast channel with receiver message cognition
2-user broadcast channel with receiver message cognition and
random state

Forward:
3-user broadcast channel with partial message cognition and
degraded message sets
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Three User Extension

Capacity results are found for the general 2 receiver BC with
full message cognition, called bidirectional broadcast channel
[T-IT ’08]
partial message cognition and degraded message set [Kramer,
Shamai, ’07]
degraded message sets [Körner, Marton, ’77]

Some results on the capacity for 3 receiver BC, degraded
message set, no message cognition [Nair, El Gamal, ’09]

Question: Can we obtain capacity results for the 3 receiver BC,
degraded message set, and full/partial message cognition?

Answer: For special cases/classes only.
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Problem: BC with Partial Message Cognition

    

M̂0,1, (M̂c,1, M̂p,1) M̂0,2, (M̂c,2, M̂p,2)

Xn

Mc,2

PY1,Y2,Y3|X

Y n
1

Y n
2

Y n
3

Mc,1 M̂0,3

Tx.

Rx. 1 Rx. 3Rx. 2

(M0, M1, M2)
M1 � (Mc,1, Mp,1)
M2 � (Mc,2, Mp,2)

Problem includes the general 2 receiver BC!
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Broadcast Channel Class: Less Noisy

Definition [Körner, Marton, ’75]
Y is less noisy than Z (notation: Y ⌫ Z) if

I(U; Y) � I(U; Z) for all U � X � (Y,Z).

Capacity result for
2 receiver less noisy BC [Körner, Marton, ’75]

3 receiver less noisy BC [Nair, Wang ’11]

Key lemma [Nair, Wang, ’11]
Let X! (Y,Z) be DM-BC with Y ⌫ Z and M any RV such that
M � Xn � (Yn,Zn

), then

1 I(Yi�1

; Zi|M) � I(Zi�1

; Zi|M), 1  i  n.

2 I(Yi�1

; Yi|M) � I(Zi�1

; Yi|M), 1  i  n.
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Inner Bound

R(1)

in,part denotes the set of (R
0

, R
1,c, R

1,p, R
2,c,R2,p) satisfying

R
0

 I(U; Y
3

)

R
1,p  I(X; Y

1

|V)

R
0

+ R
2

 min{I(V; Y
2

), I(U; Y
3

) + I(V; Y
2

|U)}
R

0

+ R
1

+ R
2,p  min{I(X; Y

1

), I(U; Y
3

) + I(X; Y
1

|U)}

for some (U,V,X) with U � V � X � (Y
1

,Y
2

,Y
3

).
R(2)

in,part: Interchange indices 1 and 2.

|U|  |X| + 4 and |V|  (|X| + 4)(|X| + 1) suffices.

Theorem: Achievable Rate Region Rin,part [ISIT’12]

Cpart ◆ Rin,part , convex hull
⇣

R(1)

in,part [ R
(2)

in,part

⌘
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Proof of R(1)

in,part: Superposition Coding

Rate splitting and construct new messages
private message M

2,p = (M(1)

2,p,M
(2)

2,p)

cognizant messages: M
1,c = (M(1)

1,c,M
(2)

1,c), M
2,c = (M(1)

2,c,M
(2)

2,c)

M(k)

� =
⇣

M(k)

1,c +M(k)

2,c

⌘

modulo 2

n max{R(k)

1,c,R
(k)

2,c}, k = 1, 2

Rx1: Decide on M(k)

1,c using knowledge of M(k)

2,c

Rx2: Decide on M(k)

2,c using knowledge of M(k)

1,c

3 layer superposition coding with non-unique decoding:
layer codeword M

0

M(1)

� M(1)

2,p M(2)

� M(2)

2,p M
1,p used by

1 un iid ⇠ PU ⇥ ⇥ ⇥ nodes 1,2,3
2 vn iid ⇠ PV|U ⇥ ⇥ ⇥ ⇥ ⇥ nodes 1,2
3 xn iid ⇠ PX|V ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ node 1

⇤

25 / 33



Proof of R(1)

in,part: Superposition Coding

Rate splitting and construct new messages
private message M

2,p = (M(1)

2,p,M
(2)

2,p)
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1,c,M
(2)

1,c), M
2,c = (M(1)

2,c,M
(2)

2,c)

M(k)

� =
⇣

M(k)

1,c +M(k)

2,c

⌘

modulo 2

n max{R(k)

1,c,R
(k)

2,c}, k = 1, 2

Rx1: Decide on M(k)

1,c using knowledge of M(k)

2,c

Rx2: Decide on M(k)

2,c using knowledge of M(k)

1,c

3 layer superposition coding with non-unique decoding:
layer codeword M

0

M(1)

� M(1)

2,p M(2)

� M(2)

2,p M
1,p used by

1 un iid ⇠ PU ⇥ ⇥ ⇥ nodes 1,2,3
2 vn iid ⇠ PV|U ⇥ ⇥ ⇥ ⇥ ⇥ nodes 1,2
3 xn iid ⇠ PX|V ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ node 1

⇤
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Less Noisy Capacity Results

Theorem: Capacity Region [ISIT’12]
If there is a less-noisy ordering between Y

1

, Y
2

, and Y
3

, then

Cpart = Rin,part.

In particular the description of Rin,part can be simplified, e.g.

Y
1

⌫ Y
2

⌫ Y
3

) I(V; Y
2

) � I(U; Y
3

) + I(V; Y
2

|U)

I(X; Y
1

) � I(U; Y
3

) + I(X; Y
1

|U)

Converse is proved for the following region, which includes the
simplified achievable rate region.

R
0

 I(U; Y
3

)

R
1,p  I(X; Y

1

|V)

R
2

 I(V; Y
2

|U)

R
1

+ R
2,p  I(X; Y

1

|U) 27 / 33



Example: Gaussian Channel

Yk = X +Nk, Nk ⇠ N(0, �2

k), k = 1, 2, 3

Corollary: Capacity Region Gaussian Channel
If �2

3

� �2

2

� �2

1

, then Cpart is given by

R
0

 1

2

log

✓

1 + ↵P
(1�↵)P+�2

3

◆

R
1

 1

2

log

✓

1 +
(1�↵��)P
�2

1

◆

+ R
1,c

R
2

 1

2

log

✓

1 +
�P

(1�↵��)P+�2

2

◆

R
1

+ R
2

 1

2

log

✓

1 + (1�↵)P
�2

1

◆

+ R
2,c ↵, �,↵ + � 2 [0, 1]

Proof: Entropy power inequality & maximal entropy property.
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Discussion: Gaussian Channel �2

3

� �2

2

� �2

1

Cognizant knowledge: R
2,c ! Rx 1, R

1,c ! Rx 2

0 0.5 1 1.5
0

0.5

1

1.5

R
2 [b

pc
u]

R1 [bpcu]

R2,c

R1,c

↵
0

: R
0

= 1

2

log

✓

1 + ↵
0

P
(1�↵

0

)P+�2

3

◆

Bounds on R
1

and R
2

, � 2 [0,↵
0

]:

R
1

 1

2

log

✓

1 +
(1�↵

0

��)P
�2

1

◆

+ R
1,c

R
2

 1

2

log

✓

1 +
�P

(1�↵
0

��)P+�2

2

◆

R
1

+ R
2

 1

2

log

✓

1 + (1�↵
0

)P
�2

1

◆

+ R
2,c

) There might be no gain due to (more) message cognition!
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Full Message Cognition: M
1,c =M

1

and M
2,c =M

2

Two examples for which capacity is known. (3 more in [ISIT’12])
Cases which we cannot solve without full message cognition.

Theorem: Capacity Region
The capacity region for the full message cognition case if
(ii) Y

3

is more capable than Y
1

and Y
2

:

R
0

+ R
1

 I(X; Y
1

)

R
0

+ R
2

 I(X; Y
2

)

(v) Y
3

is a deterministic function of X:

R
0

 H(Y
3

)

R
0

+ R
1

 I(X; Y
1

)

R
0

+ R
2

 I(X; Y
2

)

Main task: Simplify achievable rate region. Converses are easy.30 / 33



Look into a Converse for Y
1

⌫ Y
2

⌫ Y
3

n(R
1

+ R
2,p) � n✏n

Fano
 I(M

1

; Yn
1

|M
0

,M
2,c)

|                 {z                 }

=
n
P

i=1

I(M
1

,Yn
2,i+1

;Y
1,i |M0

,M
2,c,Yi�1

1

)

�I(Yn
2,i+1

;Y
1,i |M0

,M
1

,M
2,c,Yi�1

1

)

+ I(M
2,p; Yn

2

|M
0

,M
1

,M
2,c)

|                        {z                        }


n
P

i=1

I(M
2,p;Y

2,i |M0

,M
1

,M
2,c,Yn

2,i+1

,Yi�1

1

)

+I(Yi�1

1

;Y
2,i |M0

,M
1

,M
2,c,Yn

2,i+1

)

C.S.


n
X

i=1

I(M
1

,M
2,c,Yn

2,i+1

; Y
1,i|M0

,Yi�1

1

) + I(Xi; Y
2,i|M0

,M
1

,M
2,c,Yn

2,i+1

,Yi�1

1

)

|                                      {z                                      }

Y
1

⌫Y
2 I(Xi;Y1,i |M0

,M
1

,M
2,c,Yn

2,i+1

,Yi�1

1

)


n
X

i=1

I(Xi; Y
1,i|M0

,Yi�1

1

) =
n
X

i=1

I(Xi; Y
1,i|M0

) � I(Y
1,i; Yi�1

1

|M
0

)

|            {z            }

N.W.Lemma
 I(Y

1,i;Yi�1

2

|M
0

)


n
X

i=1

I(Xi; Y
1,i|Yi�1

2

,M
0

) =
n
X

i=1

I(Xi; Y
1,i|Ui)

using (Y
1,i,Y2,i) � Xi � (M

0

,M
1

,M
2

,Yi�1

1

,Yn
2,i+1

) and (Yn
1

,Yn
2

) � Xn �M
0

. ⇤
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Concluding Remarks

Capacity for general bidirectional BC is known, but extension to
general 3 receiver BC with full receiver message cognition and
degraded message sets appears to be difficult.

Problem: Extension of Csiszar sum lemma.
Observation: (More) receiver message cognition might not
enlarge capacity region.

RX cognition approach useful for genie aided converses?
Broadcast with (partial) message cognition relevant for

cellular communication
file-exchange problems

Thank you for your attention! Questions?
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