Optimal Randomization in Quantizer Design with Marginal Constraint

Naci Saldi

Queen's University

October 2012

Naci Saldi (Queen's University)

Optimal Randomization in Quantizer Design with Marginal (

October 2012 1 / 24

- Informal definition of the problem.
- Representation of the quantizers as probability measures.
- Definition of the randomization scheme.
- Parametrization of the quantizer set.
- Existence of the minimizer for the fixed output marginal constraint case.
- Definition of the problem with relaxed output marginal constraint.
- Optimality of the set of finite randomizations for the relaxed problem.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ

Motivation

• In this work, we consider the optimal randomized quantization problem with a constraint on the marginal distribution of the output, i.e.

Common Randomness

$$r$$

 $(X, \mu) \xrightarrow{x} q_r(x) \xrightarrow{y} (Y, \psi_d)$

where X and Y are Polish spaces (complete, separable metric space) and $q_r(x)$ is *M*-point quantizer.

- Recall that *M*-point quantizer $q(\cdot)$ is a measurable function from *X* to *Y* whose range cardinality is at most *M*.
- *r* is the common randomness between the encoder and the decoder.
- First, we have to define the randomization appropriately.

ヘロト 人間 と 人 ヨ と 人 ヨ と

- Let X denote quantizer's input space and Y denote its output space.
- Let $P(X \times Y)$ denote the set of probability measures on the product space $X \times Y$.
- Let μ and ψ_d be fixed probability measures on X and Y respectively.
- Yuksel and Linder in [1] and Borkar in [2] characterize the quantizers as a stochastic kernels between *X* and *Y* as follows:

$$Q(dy|x) = \delta_{q(x)}(dy)$$

where $\delta_{q(x)}(\cdot)$ is Dirac measure at q(x).

・ ロ ト ・ 雪 ト ・ 目 ト ・

• With this point of view, we can define the following subset of $\mathcal{P}(X \times Y)$ which is called quantizer set:

$$\Gamma_{\mathcal{Q}}(M) = \{ \upsilon \in \mathcal{P}(X \times Y) : \upsilon(dx, dy) = \mu(dx)Q(dy \mid x)$$

where $Q(dy \mid x) = 1_{\{q(x) \in dy\}}$ s.t. $q(x)$ is a *M*-point quantizer $\}$

- Randomly picking a quantizer equivalent to putting a probability measure on $\Gamma_Q(M)$ and each probability measure on $\Gamma_Q(M)$ corresponds to different randomization scheme.
- We have to prove the measurability of $\Gamma_Q(M)$ in $\mathcal{P}(X \times Y)$ in terms of some σ -algebra.

イロン イボン イヨン イヨン

• We will work with the weak topology on $\mathcal{P}(X \times Y)$ and the Borel σ -algebra generated by this topology.

Definition (Weak Convergence and Topology)

A sequence of probability measures $\{v_n\}$ in $\mathcal{P}(X \times Y)$ converges weakly to v in $\mathcal{P}(X \times Y)$ if

$$\lim_{n\to\infty}\int h\,\upsilon_n=\int h\,\upsilon\text{ for every }h\text{ in }\mathcal{C}_b(X\times Y).$$

Correspondingly, the weak topology on $\mathcal{P}(X \times Y)$ is defined as the weakest topology on $\mathcal{P}(X \times Y)$ for which all functionals $v \mapsto \int h v, h \in \mathcal{C}_b(X \times Y)$ are continuous.

・ロト ・ 日 ・ ・ 正 ・ ・

• The following proposition can be found in Borkar et al. [3] or in Borkar [2], as an application of Choquet theorem [4].

Proposition (1)

Let *X* be a Polish space and let *Y* be a compact Polish space. Define the following subset of $\mathcal{P}(X \times Y)$:

$$\Gamma_{\mu} = \{ \upsilon \in \mathcal{P}(X \times Y) : \upsilon(A \times Y) = \mu(A) \text{ for all } A \in B(X) \}$$

where μ is a fix probability measure on *X* and let Γ_E denote extreme points of Γ_{μ} . Then Γ_{μ} is convex and compact in the weak topology. Furthermore, Γ_E is a Borel set in the weak topology.

< ロ > < 回 > < 回 > < 回 > < 回</p>

Lemma (1)

Let X be a Polish space and Y be a compact Polish space. Then $\Gamma_Q(M)$ is a Borel set in the weak topology.

• From Proposition 1 and Lemma 1, we have the following theorem.

Theorem (1)

Let X be a Polish space and let Y be a σ -compact Polish space. Then $\Gamma_Q(M)$ is Borel subset of $\mathcal{P}(X \times Y)$ in the weak topology.

• This theorem enables us to endow $\Gamma_Q(M)$ with a probability measure. Hence, we can define the randomized quantizer set as follows:

$$\Gamma_R(M) = \{ \upsilon \in \mathcal{P}(X \times Y) : \upsilon(dx, dy) = \int_{\Gamma_Q(M)} \overline{\upsilon}(dx, dy) P(d\overline{\upsilon}) \text{ where } P \in \mathcal{P}(\Gamma_Q(M)) \}$$

Parametrization with Unit Interval

- We parameterize $\Gamma_Q(M)$ with unit interval.
- A well known isomorphism theorem states that all uncountable Borel spaces are isomorphic to each other.
- Since both Γ_Q(M) and unit interval are uncountable Borel spaces, ∃ function g between unit interval and Γ_Q(M) s.t. g is 1-1, measurable with measurable inverse.
- Let us write g as $g(r) = v^r(dx, dy)$. Then, we can write the elements in $\Gamma_R(M)$ as follows:

$$\upsilon(dx, dy) = \int_{\Gamma_Q(M)} \overline{\upsilon}(dx, dy) P(d\overline{\upsilon}) = \int_{[0,1]} \upsilon^r(dx, dy) \widetilde{P}(dr)$$

where $\widetilde{P}(A) = P(\{\overline{v} : g^{-1}(\overline{v}) \in A\}).$

- Based on this isomorphism, the following fact can be proved:
 - $q(r, x) := q_r(x) (\upsilon^r(dx, dy) = \mu(dx)\delta_{q_r(x)}(dy))$ is a measurable function such that $q(r, \cdot)$ is a *M*-point quantizer for all *r*.

Definition of the Problem

• Recall that $\Gamma_R(M)$ is defined as follows:

$$\Gamma_R(M) = \{ \upsilon \in \mathcal{P}(X \times Y) : \upsilon(dx, dy) = \int_{\Gamma_Q(M)} \bar{\upsilon}(dx, dy) P(d\bar{\upsilon}) \text{ where } P \in \mathcal{P}(\Gamma_Q(M)) \}$$

or equivalently

$$= \{ v \in \mathcal{P}(X \times Y) : v(dx, dy) = \int_{[0,1]} v^r(dx, dy) P(dr) , v^r(dx, dy) = g(r), P \in \mathcal{P}([0,1]) \}.$$

• Define the following subset of $\mathcal{P}(X \times Y)$:

$$\Gamma_{\mu\psi_d} = \{ \upsilon \in \mathcal{P}(X \times Y) : \upsilon(dx, Y) = \mu(dx), \upsilon(X, dy) = \psi_d(dy) \}.$$

where ψ_d is a fixed probability measure on *Y*.

• Define the following subset of $\Gamma_R(M)$:

$$\Gamma_R^{\psi_d}(M) = \{ \upsilon \in \Gamma_R(M) : \upsilon(X, dy) = \psi_d(dy) \}$$
$$= \Gamma_R(M) \cap \Gamma_{\mu\psi_d}.$$

< ロ > < 回 > < 回 > < 回 > <</p>

- We will optimize over $\Gamma_R^{\psi_d}(M)$.
- We can define average distortion function as a functional on $\mathcal{P}(X \times Y)$:

$$L(\upsilon) = \int_{X \times Y} c(x, y) \upsilon(dx, dy).$$

where c(x, y) is a continuous and non-negative function on $X \times Y$.

• Optimal randomized quantization with marginal constraint problem can be written in the following form:

$$(P_1) \inf_{\upsilon \in \Gamma^{\psi_d}_R(M)} L(\upsilon).$$

イロン イボン イヨン イヨン

Lemma (2)

 $L(v(dx, dy)) = \int_{X \times Y} c(x, y)v(dx, dy)$ is lower semi-continuous on $\mathcal{P}(X \times Y)$ under weak convergence, i.e.

$$\liminf_{n \to \infty} \int_{X \times Y} c(x, y) \upsilon_n(dx, dy) \ge \int_{X \times Y} c(x, y) \upsilon(dx, dy)$$

as $v_n \rightarrow v$ weakly.

- If we can prove the compactness of $\Gamma_R^{\psi_d}(M)$, then we are done.
- Instead, we show the compactness of some subset of $\Gamma_R^{\psi_d}(M)$ which is an optimal class for this problem.

イロン イボン イヨン イヨン

- First, we show that randomization can be restricted to a certain subset of $\Gamma_Q(M)$.
- Then, we prove the compactness of the optimal class which is the randomization of this subset.
- To construct such a subset we use some results from optimal transport theory.

Definition

Probability measure *P* on *X* is said to be *c*-continuous if it satisfies

$$P(\{x: c(x, a) - c(x, b) = k\}) = 0$$

for all $a, b \in Y$, $a \neq b$, and for all $k \in \Re$.

- We have the following assumptions to prove the existence of the minimizer:
 - (a) μ is *c*-continuous.
 - (b) Y is compact.

< ロ > < 回 > < 回 > < 回 > < 回</p>

- Observe that each quantizer induces a probability measure on *Y* whose support cardinality is at most *M*.
- Let $\mathcal{P}_M(Y)$ denote the set of probability measures on *Y* which are induced by *M*-point quantizers.
- We are achieving a given distribution on *Y* by randomization of $\Gamma_Q(M)$ which is essentially equivalent to randomization of $\mathcal{P}_M(Y)$.
- We can construct an equivalence class among probability measures in $\Gamma_Q(M)$ based on their second marginals, i.e.

$$\upsilon_1(dx, dy) \sim \upsilon_2(dx, dy)$$
 if $\upsilon_1(X, dy) = \upsilon_2(X, dy)$.

• If we can find optimal elements in each equivalence class, then these elements form an optimal set for the randomization.

・ロト ・四ト ・ヨト ・ヨト

- Let $\psi \in \mathcal{P}_M(Y)$, then finding optimal elements in each equivalence class is essentially equivalent to the optimal mass transfer problem with marginals μ and ψ .
- The following fact is due to the optimal mass transport theory: If the probability measure μ on X is *c*-continuous, then there exists a unique optimal element in each equivalence class [5, Cuesta-Albertos et al.].
- Let $\Gamma_{opt}(M)$ be the collection of these optimal elements.
- $\Gamma_{opt}(M)$ is the optimal subset of $\Gamma_Q(M)$ for the randomization.
- In the rest of this section, the set, on which the randomization is applied, is $\Gamma_{opt}(M)$ instead of $\Gamma_Q(M)$.

・ロト ・四ト ・ヨト ・ヨト

• If *Y* is compact, then we can conclude the compactness of $\Gamma_{opt}(M)$ under the following assumption:

(c)
$$\int_{X \times Y} c(x, y) \upsilon(dx, dy) < \infty$$
 for all $\upsilon \in \Gamma_{opt}(M)[6, Villani].$

- Let $\Gamma_{Ropt}(M)$ denote the randomization of $\Gamma_{opt}(M)$.
- Hence, the original problem (P1) reduces to the following one:

(P2)
$$\inf_{\upsilon \in \Gamma^{\psi_d}_{Ropt}(M)} \int c(x, y)\upsilon(dx, dy)$$

• To show the existence of the minimizer, it is enough to prove compactness of the set $\Gamma_{Ropt}^{\psi_d}(M)$ which is equivalent to proving the compactness of $\Gamma_{Ropt}(M)$ since $\Gamma_{\mu\psi_d}$ is already compact.

• Let us define the following mapping between $\mathcal{P}(\Gamma_{opt}(M))$ and $\Gamma_{Ropt}(M)$:

$$s(P) = \int_{\Gamma_{opt}(M)} \upsilon(dx, dy) P(d\upsilon).$$

- $s(\cdot)$ is continuous.
- Since the set of probability measures on compact sets is compact in the weak topology, *P*(Γ_{opt}(M)) is also compact.
- Hence, the compactness of $\Gamma_{Ropt}(M)$ implies the compactness of the set $\Gamma_{Ropt}^{\psi_d}(M)$.

Theorem (2)

There exists a minimizer for the following problem:

$$\inf_{v\in\Gamma_R^{\psi_d}}\int c(x,y)\upsilon(dx,dy)$$

if the assumptions (a), (b) and (c) are satisfied.

< ロ > < 回 > < 回 > < 回 > < 回</p>

- Since the randomization should be common both to the decoder and the encoder, infinite randomization may not be practical and realistic.
- However, if the desired probability measure ψ_d on *Y* is continuous, then we must apply infinite randomization to achieve this.
- Hence, we should relax the fixed output marginal constraint in order to get more realistic optimal randomization schemes (i.e. finite randomization).

・ロト ・ 一 ト ・ ヨ ト ・ ヨ

• Now, we will consider the following relaxed minimization problem:

(P3)
$$\inf_{\upsilon \in M^{\delta}_{\psi_d}} \int_{X \times Y} c(x, y) \upsilon(dx, dy)$$

where $M_{\psi_d}^{\delta} = \{ \upsilon \in \Gamma_R(M) : \upsilon(X, dy) \in B(\psi_d, \delta) \}$ and $B(\psi_d, \delta)$ is a ball in $\mathcal{P}(Y)$ with center ψ_d and radius δ in terms of Prokhorov metric which metrizes the weak topology.

イロン イロン イヨン イヨン

- The goal is to show that the set of finitely randomized quantizers is an optimal class for this problem.
- Let $\Gamma_{FR}(M)$ denote the finitely randomized quantizer set.
- Clearly $\Gamma_{FR}(M) \subset \Gamma_R(M)$.
- Hence, we want to show:

$$\inf_{\upsilon\in M_{\psi_d}^{\delta}}\int_{X\times Y}c(x,y)\upsilon(dx,dy)=\inf_{\upsilon\in \Gamma_{FR}(M)\cap M_{\psi_d}^{\delta}}\int_{X\times Y}c(x,y)\upsilon(dx,dy)$$

Lemma (3)

 M_{ψ}^{ε} is a open set for any ε and ψ in $\Gamma_{R}(M)$ in relative topology of weak convergence where $M_{\psi}^{\varepsilon} = \{ \upsilon \in \Gamma_{R}(M) : \upsilon(X, dy) \in B(\psi, \delta) \}.$

• Hence, $M_{\psi_d}^{\delta}$ is an open set in $\Gamma_R(M)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

We want to replace any infinite randomization υ in M^δ_{ψd} with υ_F in Γ_{FR}(M) which is living in some neighborhood M^ε_{ψ0} ⊂ M^δ_{ψd} of υ and has less distortion than υ.

Lemma (4)

 $\Gamma_{FR}(M)$ is dense in $\Gamma_R(M)$, i.e. for any v in $\Gamma_R(M)$ and for any $\varepsilon > 0$ we can find \hat{v} in $\Gamma_{FR}(M)$ such that $\hat{v} \in B(v, \varepsilon)$.

• Let us define the following subset of $\Gamma_R(M)$:

$$G = \{ v \in \Gamma_R(M) : L(v) < L(v_0) \}.$$

• If $L(\cdot)$ is a continuous functional, then G is an open set.

• $L(\cdot)$ is continuous for compact X and Y and is continuous for general X and Y under the following the assumption:

(a)
$$\lim_{A\to\infty}\sup_{\upsilon\in\Gamma_Q(M)}\int c(x,y)\mathbf{1}_{\{c(x,y)\geq A\}}\upsilon(dx,dy)=0.$$

Lemma (5)

 $M_{\psi_0}^{\varepsilon} \cap G$ is a non-empty open set in $\Gamma_R(M)$.

Theorem (3)

Under the assumption (a) or the assumption that X and Y are compact, finite randomization is an optimal class for the problem (P3), i.e.

$$\inf_{\upsilon \in M_{\psi_d}^{\delta}} \int_{X \times Y} c(x, y) \upsilon(dx, dy) = \inf_{\upsilon \in \Gamma_{FR}(M) \cap M_{\psi_d}^{\delta}} \int_{X \times Y} c(x, y) \upsilon(dx, dy)$$

(日) (四) (日) (日) (日)

- In this work, we consider optimal randomized quantization with a constraint on the output marginal distribution.
- First, the quantizer set is represented as a set of probability measure on the product space.
- Then, appropriate randomization scheme is defined on this set.
- The existence of the minimizer is proved for the fixed output marginal constrained case under the assumption of compact *Y* and *c*-continuous μ on *X*.
- The problem with relaxed output marginal constraint is investigated.
- It is proved that the set of finite randomizations is an optimal class for the relaxed problem.

・ロト ・ (日) ・ ・ ヨ ・ ・ ヨ ・

- S. Yuksel and T. Linder, "Optimization and convergence of observation channels in stochastic control," *SIAM J. on Control and Optimization*, vol. 50, pp. 864–887, 2012.
- V. Borkar, "White-noise representation in stochastic realization theory," SIAM Journal of Control and Optimization, vol. 31, pp. 1093–1102, 1993.
- A. S. V. Borkar, S. Mitter and S. Tatikonda, "Sequential source coding: An optimization viewpoint," 44th IEEE Conference on Decision and Control, 2005.
- ► G. Choquet, *Lectures on analysis*.

W.A. Benjamin, Inc., 1969.

- A. T.-D. J.A. Cuesta-Albertos, "A characterization for the solution of the monge-kantorovich mass transference problem," *Statistics and Probability Letters*, vol. 1, pp. 147–152, 1993.
- C. Villani, *Optimal Transport: Old and New*. Springer, 2009.

イロン イボン イヨン イヨン