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 “de Bruijn’s identity”

• Continuous-time Channel:

XT is a non-negative stochastic process

Y T
� |XT is non-homogenous Poisson process with intensity function ⇤ ·XT

• Note
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6.2 Random Variables

Suppose that X is a non-negative random variable and the conditional law of a r.v. Y� , given X, is Poisson(⇤X). If
X ⌅ P , denote expectation w.r.t. the corresponding joint law of X and Y� by EP , the distribution of Y� by PY� ,
the conditional expectation by EP [X|Y� ], etc. We denote the mutual information by IP (X;Y�) or simply I(X;Y�)
when there is no ambiguity. Let further mleP,Q(⇤) denote the mean loss under ⌥ in estimating X based on Y� using
the estimator that would have been optimal had X ⌅ Q when in fact X ⌅ P , i.e.,

mleP,Q(⇤)
⇤
= EP

⇤
⌥
�
X,EQ[X|Y� ]

⇥⌅
. (20)

The following is a new representation of relative entropy, paralleling the Gaussian channel result of [31]:

Theorem 6.1 For any pair P,Q of probability measures over [a, b], where 0 < a < b < ⇧,

D(P⌥Q) =

⌥ ⇥

0
[mleP,Q(⇤)�mleP,P (⇤)] d⇤ (21)

Theorem 6.1 is a direct consequence of the fact (proved in Section 9) that

lim
��⇥

D(PY�⌥QY� ) = D(P⌥Q), (22)

combined with the following result, which is the Poisson parallel of [31, Equation (24)]:

Theorem 6.2 For any P,Q as in Theorem 6.1, and for any ⇤ ⇤ 0,

D(PY�⌥QY� ) =

⌥ �

0
[mleP,Q(⇥)�mleP,P (⇥)] d⇥. (23)

To note one immediate implication of Theorem 6.2, the non-negativity of the integrand on the right hand side of (23),
as follows from (6), implies that D(PY�⌥QY� ) increases with ⇤. Additional implications are pointed out in Section 7.

6.3 Continuous-Time Stochastic Processes

Fix T > 0. Denote by D the space of right-continuous paths with left limits from [0, T ] to R. Endow D with the
usual Skorohod topology [3] and denote by D the Borel ⌃-algebra of D. Denote by P the collection of probability
measures P on (D,D) under which for P -a.e. ⇧ ⌃ D, ⇧ is bounded between two positive constants.

A measurable space (�,F) is given, on which a stochastic process XT = {Xt, 0 ⇥ t ⇥ T} and, for each ⇤ > 0,
a stochastic process Y T

� = {Y�,t, 0 ⇥ t ⇥ T}, are given. These processes represent the signal and observation,
respectively. The sample paths of each of them are in D, and each is assumed to be measurable as a map from
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GuoShamaiVerdu    setting

1 for Duncan slide

AWGN channel
dYt = Xtdt+ dWt, 0 ⇥ t ⇥ T

W is standard white Gaussian noise, independent of X
[Duncan 1970]:
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2 for GSV slide

Y =
⌅
� ·X +W

W is a standard Gaussian, independent of X

I(�) = I(X;Y )

mmse(�) = E
�
(X � E[X|Y ])2

⇥

[Guo, Shamai and Verdú 2005]:

d
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2
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3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇤ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇤ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.
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2 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
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d

d�
I(�) =

1

2
mmse(�)

mmse(�) = E

⇤⇧ T

0
(Xt � E[Xt|Y T ])2dt

⌅

or in its integral version

I(snr) =
1

2

⇧ snr

0
mmse(�)d�

2

1 for Duncan slide

AWGN channel
dYt = Xtdt+ dWt, 0 ⇥ t ⇥ T

W is standard white Gaussian noise, independent of X
[Duncan 1970]:

I(XT ;Y T ) =
1

2
E

⇤⇧ T

0
(Xt � E[Xt|Y t])2dt

⌅

dYt =
⇤
�Xtdt+ dWt, 0 ⇥ t ⇥ T

I(�) = I(XT ;Y T )

cmmse(�) = E

⇤⇧ T

0
(Xt � E[Xt|Y t])2dt

⌅

I(XT ;Y T ) =
1

2
E

⇤⇧ T

0
(Xt � E[Xt|Y t])2dt

⌅

[Duncan 1970]:

I(�) =
�

2
· cmmse(�)

2 for GSV slide

Y =
⇤
� ·X +W

W is a standard Gaussian, independent of X

I(�) = I(X;Y )

mmse(�) = E
�
(X � E[X|Y ])2

⇥

[Guo, Shamai and Verdú 2005]:
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2 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.
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input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:

2

Monday, October 22, 12



SNR in Duncan 

1 for Duncan slide

AWGN channel
dYt = Xtdt+ dWt, 0 ⇥ t ⇥ T

W is white Gaussian noise, independent of X
[Duncan 1970]:

I(XT ;Y T ) =
1

2
E

�⇤ T

0
(Xt � E[Xt|Y t])2dt

⇥

dYt =
⇧
�Xtdt+ dWt, 0 ⇥ t ⇥ T

I(�) = I(XT ;Y T )

cmmse(�) =
1

2
E

�⇤ T

0
(Xt � E[Xt|Y t])2dt

⇥

I(XT ;Y T ) =
1

2
E

�⇤ T

0
(Xt � E[Xt|Y t])2dt

⇥

[Duncan 1970]:

I(�) =
1

2
cmmse(�)

2 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
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3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇤ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇤ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.
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In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇤ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇤ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
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A representation of relative entropy 
[Verdu 2010]:
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3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇥ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇥ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
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is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
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to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇥ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇥ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
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3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
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2 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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2 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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Minimax (causal) Estimation

Theorem 6.4 Let P and Q be two probability measures that are members of P. For � � 0,
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Put together, Theorem 6.3 and Theorem 6.5 yield, for � > 0,
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which is the Poissonian analogue of [33, Theorem 2]. On a technical note, the r.h.s. of (24), (25) and (26) are
well-defined as integrals of non-negative Borel measurable functions, as will follow from our treatment in Section 9.
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which is the Poissonian analogue of [33, Theorem 2]. On a technical note, the r.h.s. of (24), (25) and (26) are
well-defined as integrals of non-negative Borel measurable functions, as will follow from our treatment in Section 9.
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which is the Poissonian analogue of [33, Theorem 2]. On a technical note, the r.h.s. of (24), (25) and (26) are
well-defined as integrals of non-negative Borel measurable functions, as will follow from our treatment in Section 9.
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which is the Poissonian analogue of [33, Theorem 2]. On a technical note, the r.h.s. of (24), (25) and (26) are
well-defined as integrals of non-negative Borel measurable functions, as will follow from our treatment in Section 9.
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Strong Converse
 “strong redundancy-capacity” result of

[Merhav and Feder 1995] applied here implies: 

Theorem 6.4 Let P and Q be two probability measures that are members of P. For ⇥ ⇤ 0,
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which is the Poissonian analogue of [33, Theorem 2]. On a technical note, the r.h.s. of (24), (25) and (26) are
well-defined as integrals of non-negative Borel measurable functions, as will follow from our treatment in Section 9.
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Example

I(Xi;Yi) = D(PXi,Yi
⌅PXi ⇥ PYi)

= D(PYi|Xi⌅PYi |PXi)

H(X|Y )

D(PX|Y ⌅QX|Y |PY )

H(X,Y ) = H(X) +H(Y |X)

D(PX,Y ⌅QX,Y ) = D(PX⌅QX) +D(PY |X⌅QY |X |PX)

I(X;Y ) = D(PY |X⌅PY |PX) = D(PX|Y ⌅PX |PY )

Consider first estimating

lim
n⇥⇤

1

n
H(Xn)

with

� 1

n
logQ(Xn) = � 1

n

n⇧

i=1

logQ(Xi|Xi�1)

vs.
1

n

n⇧

i=1

h
�
Q(xi+1|Xi)

⇥

where
h(Q(x)) = �

⇧

x

Q(x) logQ(x)

This is essentially the best you can do.
Given:
orthonormal signal set

{⇤i(t), 0 ⇤ t ⇤ T}ni=1

Xt =
n⇧

i=1

Bi · ⇤i(t)

P =
⇤
laws P on XT : EP ⌅B⌅2 ⇤ n⇥ and EP ⌅B⌅0 ⇤ n�

⌅

since

Yi =

⌃ T

0
⇤i(t)dYt 1 ⇤ i ⇤ n
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⌅

since

Yi =

⌃ T
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⇤i(t)dYt 1 ⇤ i ⇤ n

5

are su�cient statistics for Y T ,
I(XT ;Y T ) = I(Bn;Y n)

=⌅

max I(XT ;Y T ) = max I(Bn;Y n) = max{I(B;Y ) : B2 ⇥ ⇥, P (B = 0) ⇤ (1� �)}

latter solved by

6

?
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Example (cont.)
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latter solved by

6

are su�cient statistics for Y T ,
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latter solved by

6

Lei Zhang and Dongning Guo, “Capacity of Gaussian Channels with Duty Cycle
and Power Constraints”, IEEE Int. Symposium on Information Theory 2011

latter considered and numerically solved in:
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Example (cont.)
thus the minimax filter here is the Bayes filter assuming:

are su�cient statistics for Y T ,
I(XT ;Y T ) = I(Bn;Y n)

=⌅

max I(XT ;Y T ) = max I(Bn;Y n) = max{I(B;Y ) : B2 ⇥ ⇥, P (B = 0) ⇤ (1� �)}

latter solved by

Xt =
n�

i=1

B�
i · ⇤i(t)

where B�
i are iid according to the capacity achieving distribution of [Zhang and Guo, 2011]

6

are su�cient statistics for Y T ,
I(XT ;Y T ) = I(Bn;Y n)

=⌅

max I(XT ;Y T ) = max I(Bn;Y n) = max{I(B;Y ) : B2 ⇥ ⇥, P (B = 0) ⇤ (1� �)}

latter solved by

Xt =
n�

i=1

B�
i · ⇤i(t)

where B�
i are iid according to the capacity achieving distribution of [Zhang and Guo, 2011]

6

cf. [Albert No + T.W., ISIT 2013]...
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(well) beyond Gaussian noise 

• Poisson channel  

• Lévy-type channels:

• Input-Output relationship expressed via Lévy-

type stochastic integral  

• can obtain formulae via Lévy-Khintchine-type 
decompositions  
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information 

control  

networks 

cmle

P,Q

(snr) =

Relationship between cmmse and mmse?
?)

X)

X

)?

+

=?

What if X ⇠ P but the estimator thinks X ⇠ Q ?

mse

P,Q

(�) = E
P

⇥

(X � E
Q

[X|Y ])2
⇤

What is Cost of Mismatch?

D(PkQ) =

Z 1

0
[mse

P,Q

(�)�mse

P,P

(�)]d�

D(P
Y

snr

kQ
Y

snr

) =

Z

snr

0
[mse

P,Q

(�)�mse

P,P

(�)]d�

d

d�
D(P

Y

kQ
Y

) = mse

P,Q

(�)�mse

P,P

(�)

X ⇠ P

?

3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇠ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇠ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di↵ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to

4
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The presence of Feedback
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The presence of Feedback
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2 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
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continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
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that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
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distribution under Q, at SNR = �.
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Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
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the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
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relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
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Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
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3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
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where in the last line we have used the fact that (conditional) directed information (between two sequences of

length 2 in this case) is upper bounded by the (conditional) mutual information [1, Thm 2].

The following definition is now natural:

Definition 1. Let (XT
0

, Y T
0

) be a pair of jointly distributed stochastic processes. The Directed Information between
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is defined as

I
�
XT

0

! Y T
0

�
:= inf

t
It

�
XT

0

! Y T
0

�
, (17)

where the infimum is over all n and t as in (6).

Note that the definitions and conventions preceding Definition 1 imply that the directed information I
�
XT

0
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is alway well defined as an extended non-negative real number (i.e., as an element of [0,1]). It is also worth noting,

by recalling (4), that each of the conditional mutual informations in (9), and hence the sum, is a supremum over

appropriate partitions in ‘space’ of the stochastic process in the corresponding time intervals. Thus the directed

information in (17) is an infimum over time partitions of a supremum over ‘space’ partitions. Note further, in light

of Proposition 1, that
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We extend the directed information to the conditional directed information I
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where I
�
XT
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! Y T
0

��V = v) on the right hand side of (19) denotes the directed information, as already defined

in Definition 1, when the pair (XT
0

, Y T
0

) is jointly distributed according to (a regular version of) the conditional

distribution given {V = v}.

As is clear from its definition in (5), the discrete-time directed information satisfies
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A continuous-time analogue would seem to be that, for small � > 0,

I
�
Xt+�

0

! Y t+�
0

�
� I

�
Xt

0

! Y t
0

�
⇡ I(Y t+�

t ;Xt+�
0

|Y t
0

). (21)

where

[W., Permuter, Kim 2012] 

I(Xn;Y n) ⇡ 0 ) X and Y are essentially independent
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for every stationary P

and pointwise universal if
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1
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log
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n(Xn)
Q
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for every stationary and ergodic P

The directed information from Xn to Y n is defined as

I(Xn ! Y n) ,
nX

i=1

I(Xi;Y
i

|Y i�1) = H(Y n)�H(Y nkXn) (1)

where H(Y nkXn) is the causally conditional entropy

H(Y nkXn) ,
nX

i=1

H(Y
i

|Y i�1, Xi) = E [� log P (Y nkXn)] (2)

Compared with the definition of mutual information,

I(Xn;Y n) = H(Y n)�H(Y n|Xn), (3)

directed information has the causally conditional entropy in place of the conditional entropy.
Unlike mutual information, directed information is not symmetric, i.e., I(Y n ! Xn) 6=
I(Xn ! Y n) in general.

The following notation of causal conditional pmfs will be used throughout:

P (xnkyn) =
nY

i=1

P (x
i

|xi�1, yi) (4)

p(xnkyn�1) =
nY

i=1

p(x
i

|xi�1, yi�1). (5)

It is easily verified that
p(xn, yn) = p(ynkxn)p(xnkyn�1), (6)

and that we have the conservation law:

I(Xn;Y n) = I(Xn ! Y n) + I(Y n�1 ! Xn), (7)
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Duncan’s theorem. To state it formally we assume a probability space (⌦,F , P ) with an associated filtration {F
t

}

satisfying the “usual conditions” (right-continuous and F
0

contains all the P -negligible events in F , cf., e.g., [?,

Definition 2.25]). Recall also that when the standard Brownian motion is adapted to {F
t

} then, by definition, it is

implied that, for any s < t, B
t

�B
s

is independent of F
s

(rather than merely of Bs

0

, cf., e.g., [?, Definition 1.1]).

Theorem 2. sdjhd

Let {(X
t

, B
t

)}T
t=0

be adapted to the filtration {F
t

}T
t=0

, where XT

0

is a signal of finite average power
R
T

0

E[X2

t

]dt < 1 and BT

0

is a standard Brownian motion. Let Y T

0

be the output of the AWGN channel whose

input is XT

0

and whose noise is driven by BT

0

, i.e.,

dY
t

= X
t

dt+ dB
t

.

Suppose that the regularity assumptions of Proposition 2 are satisfied for all 0 < t < T . Then

1

2

Z
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E
⇥
(X

t

� E[X
t

|Y t

0

])

2

⇤
dt = I(XT

0

! Y T

0

)

Note that unlike in Theorem 1, where the channel input process is independent of the channel noise process,

in Theorem 2 no such stipulation exists and thus the setting in the latter accommodates the presence of feedback.

Furthermore, since I(XT

0

! Y T

0

) is not invariant to the direction of the flow of time in general, Theorem 2 implies,

as should be expected, that neither is the causal MMSE for processes evolving in the generality afforded by the

theorem.

That Theorem 1 can be extended to accommodate the presence of feedback has been established for a

communication theoretic framework by Kadota, Zakai, and Ziv [22]. Indeed, in communication over the AWGN

channel where XT

0

= XT

0

(M) is the waveform associated with message M , in the absence of feedback the Markov

relation M ! XT

0

! Y T

0

implies that I(XT

0

;Y T

0

) on the right hand side of (84), when applying Theorem 1 in

this restricted communication framework, can be equivalently written as I(M ;Y T

0

). The main result of [22] is that

this relationship between the causal estimation error and I(M ;Y T

0

) persists in the presence of feedback. Thus, the

combination of Theorem 2 with the main result of [22] implies that in communication over the AWGN channel, with

or without feedback, we have I(M ;Y T

0

) = I(XT

0

! Y T

0

). This equality holds well beyond the Gaussian channel,

as is elaborated in Section VI. Note further that Theorem 2 holds in settings more general than communication,

where there is no message but merely a signal observed through additive white Gaussian noise, adapted to a general

filtration.

Theorem 2 is a direct consequence of Proposition 2 and the following lemma.

Lemma 1 ( [23]). Let P and Q be two probability laws governing (XT

0

, Y T

0

), under which (2) and the stipulations

of Theorem 2 are satisfied. Then
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. (86)

Lemma 1 was implicit in [23]. It follows from the second part of [23, Theorem 2], put together with the exposition

in [23, Subsection IV-D] (cf., in particular, equations (148) through (161) therein).
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Lemma 1 was implicit in [23]. It follows from the second part of [23, Theorem 2], put together with the exposition

in [23, Subsection IV-D] (cf., in particular, equations (148) through (161) therein).
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2 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⌅ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⌅ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di�ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(� · X), the parameter � ⇤ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ⇥ t ⇥ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ⇥ t ⇥ T} is a non-homogeneous Poisson process with intensity function � ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it

2
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[Guo, Shamai and Verdú 2005]:
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Mismatched setting  
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Mismatched setting 
(cont.)   

Theorem 6.4 Let P and Q be two probability measures that are members of P. For ⇥ ⇧ 0,

D(PY T
�
�QY T

�
) = ⇥ · [cmleP,Q(⇥)� cmleP,P (⇥)] . (27)

Theorem 6.5 (under mild conditions)

D(PY T �QY T ) ⌥ cmleP,Q � cmleP,P (28)

cmseP,Q � cmseP,P = D(PY T �QY T ) (29)

• Girsanov-type theory for expressing log dQY T

dlaw of homogenous Poisson as a filtering integral

• manipulating

D(PY T �QY T ) = EP

�

�
log dPY T

dlaw of homogenous Poisson
log dQY T

dlaw of homogenous Poisson

�

✏

via ‘orthogonality’ etc.

Put together, Theorem 6.3 and Theorem 6.5 yield, for ⇥ > 0,

cmleP,Q(⇥)� cmleP,P (⇥) =
1
⇥

⇣ �

0
[mleP,Q(�)�mleP,P (�)] d� =

1
⇥

D(PY T
�
�QY T

�
), (30)

which is the Poissonian analogue of [33, Theorem 2]. On a technical note, the r.h.s. of (24), (25) and (26) are
well-defined as integrals of non-negative Borel measurable functions, as will follow from our treatment in Section 9.

6.4 for slides: minimaxity

minimax(P, snr) ⌃= min
{X̂t(·)}0�t�T

max
P⇧P

⌦
EP

�⇣ T

0
✏(Xt, X̂t(Y t))dt

 
� cmseP,P (snr)

↵

minimax(P, snr) = min
Q

max
P⇧P

[cmseP,Q(snr)� cmseP,P (snr)] (31)

=
2

snr
min

Q
max
P⇧P

D
�
PY T

snr

⇧⇧QY T
snr

⇥
(32)

=
2

snr
max

⇤
I
�
�;Y T

snr

⇥
: � is a P-valued RV

⌅
(33)

=
2

snr
C
⌃⇤

PY T
snr

⌅
P⇧P

⌥
(34)

Furthermore, the ‘strong redundancy-capacity’ results are directly applicable here and imply:

6.5 strong red cap

 ⇤ > 0 and any filter {X̂t(·)}0⌅t⌅T ,

EP

�⇣ T

0
✏(Xt, X̂t(Y t))dt

 
� cmseP,P (snr) ⇧ (1 � ⇤) · minimax(P, snr) (35)

for all P � P with the possible exception of sources in a subset B ⌃ P where

w⇤(B) ⌅ e · 2
�⇥·C

„

n

PY T
snr

o

P⇥P

«

, (36)

w⇤(B) ⌅ e · 2�⇥·minimax(P,snr),

w⇤ being the capacity achieving prior

11

holds with or without FB, appears in TW2010 implicitly
and explicitly in workshop book chapter 

[Asnani, Venkat, W. 2012] 

(why?) 
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implications and apps

• minimax estimation setting carries over

• directed info maximization instead of 
mutual info but same idea

• similar extensions to the more general 
channels 
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3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇠ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇠ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di↵ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to

4
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continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇠ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇠ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.
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yes! 
(in causal estimation over Gaussian, Poisson, or general Levy-type noise)

minimax estimation for each observation separately 
would be essentially optimal  

Monday, October 22, 12



information 

control  

networks 

cmle

P,Q

(snr) =

Relationship between cmmse and mmse?
?)

X)

X

)?

+

=?

What if X ⇠ P but the estimator thinks X ⇠ Q ?

mse

P,Q

(�) = E
P

⇥

(X � E
Q

[X|Y ])2
⇤

What is Cost of Mismatch?

D(PkQ) =

Z 1

0
[mse

P,Q

(�)�mse

P,P

(�)]d�

D(P
Y

snr

kQ
Y

snr

) =

Z

snr

0
[mse

P,Q

(�)�mse

P,P

(�)]d�

d

d�
D(P

Y

kQ
Y

) = mse

P,Q

(�)�mse

P,P

(�)

X ⇠ P

?

3 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level � is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and �. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ⇠ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ⇠ Q, the integral over all SNR values up to � of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = �.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that di↵ers from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
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conclusion 

• relations between mutual information, relative 
entropy, and estimation 

• findings of pure estimation theoretic significance 

• allow the transfer of tools

• much carries over to presence of feedback 

• implications for networks 
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