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information, control, networks

® real-time and limited delay communication
® feedback communications
® “action’ in information theory

® relations between information and
estimation (w. feedback + networks)
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Haves and Have-Nots (in this talk)
we’ll have:

® some theorems
® cute (and meaningful) relations

® an algorithmic framework
we won't have:

® account of related literature
® stipulations

® proofs

® al|gorithms

® data
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“de Bruijn’s identity”
[A.]. Stam 1959]:

X independent of Z ~ N(0, 1)

%h (X + \/iz) _ %J(X +V12Z)




G uoShamaiVerdu setti ng

Y =\/v- X+W

W is a standard Gaussian, independent of X

I(v) =1(X;Y)

mmse(y) = E [(X — E[X|Y])?]




'Guo, Shamai and Verdu 2005|:




GSV in continuous time

dY, = X, dt +dW,, 0<t<T

I(y) =I(X7;Y7)

mmse(y) = F

/T(Xt — B[X,|Y'])*dt




/Guo, Shamai and Verdd 2005] [Zakai 2005]:

d 1

@](V) = 5 mmse(7)

or in its integral version

1 snr
[(snr) = 5/ mmse(y)d~y
0
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Duncan

dY, = X,dt +dW,, 0<t<T

W is standard white Gaussian noise, independent of X

'Duncan 1970]:

1 T
[(XT: Y1) = 5 F / (X, — E[X,|Y*)dt
0
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SNR in Duncan

dY, = A Xudt +dW,, 0<t<T

I(y) =I(X";Y")

cmmse(y) = E /o (X, — B[ X,|Y"])*dt

'Duncan 1970]:

I(v) = % - cmmse(7)




Recap

[Duncan 1970]:

I[(v) = % - cmmse ()

|Guo, Shamai and Verdd 2005], [Zakai 2005]:

1 snr
I(snr) = 5/ mmse(y)dy
0

="/
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Relationship between cmmse and mmse

'Guo, Shamai and Verdu 2005]:

1

snr
cmmse(snr) = S—/ mmse(y)d~y
nr Jg
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Mismatch

Y=y X+W

W is a standard Gaussian, independent of X

What if X ~ P but the estimator thinks X ~ () 7

msep.q(7) = Ep [(X — Eg[X|Y])?]




A representation of relative entropy
[Verdu 2010]:

D(P|Q) = / " msepo() — msep,p(7)]dy

D(Py, |Qy..) = / msep.o(y) — msep p(7)]dy
0
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Causal vs. Non-causal Mismatched Estimation

dY, = A Xedt +dW,, 0<t<T

W is standard white (Gaussian noise, independent of X

T
emsep o(7) = Ep / (X, — Eo[X,|V"))2dt
0

T
mseP,Q(’Y) = EP / (Xt — EQ [Xt’YT])th
0
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Causal vs. Non-causal Mismatched Estimation

dY, = A Xedt +dW,, 0<t<T

W is standard white (Gaussian noise, independent of X

T
emsep o(7) = Ep / (X, — Eo[X,|V"))2dt
0

T
mseP,Q(’Y) = EP / (Xt — EQ [Xt’YT])th
0

Relationship between cmsep o and msep g 7
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Relationship between cmsep o and msep ¢

[Weissman 2010]:

1 sNnr

cmsep o(snr) = p— msep o (v)dy
0
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Relationship between cmsep o and msep ¢

[Weissman 2010]:

1 sNnr

— d
A msep.q(v)dy

cmsep o(snr)

2 I(snr) + D (Pyr | Qyr)]

sSNr
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Implications and Applications

® many




Minimax (causal) Estimation

{X:()}Yo<i<r PEP

. i
minimax (7P, snr) 2 min  max {Ep / U Xy, X (YH))dt | — cmsep,p(snr)}
0




Minimax (causal) Estimation

{X:()}Yo<i<r PEP

. i
minimax (7P, snr) 2 min  max {Ep / U Xy, X (YH))dt | — cmsep,p(snr)}
0




Minimax (causal) Estimation

{X:()}Yo<i<r PEP

. i
minimax (7P, snr) 2 min  max {Ep / U Xy, X (YH))dt | — cmsep,p(snr)}
0




minimax (7P, snr)

Minimax (causal) Estimation

A .
— min max

{X:()}Yo<i<r PEP

classical

ours

Redundancy-Capacity theory

{Ep

/T 0 Xy, X (Y1)dt

— cmsep,p(snr)}
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minimax (7P, snr)

Minimax (causal) Estimation

A .
— min max

{X:()}Yo<i<r PEP

classical

ours

Redundancy-Capacity theory

Shannon

{Ep

/T 0 Xy, X (Y1)dt

— cmsep,p(snr)}
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Minimax (causal) Estimation

- _
minimax (7P, snr) 2 - min  max<{ Ep / 0 Xy, X, (YY))dt| — cmsep p(snr)
{Xe()o<e<r pPep 0

classical

minimax(P,snr) = ' _
inimax(P, snr) ménrgg%[cmsep@(snr) cmsep p(snr)]

ours 2
= — minmaxD (PyT
sNnr Q PeP =nr

Redundancy-Capacity theory 9

—  Z 1nax {] (@; str) : © is a P-valued RV}

Qv )

snr

SNr

Shannon ) C’
= 2 0 (R )
anr ({ Ys,nr}PEP
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Ep

Strong Converse

“strong redundancy-capacity” result of
[Merhav and Feder 1995] applied here implies:

Ve > 0 and any filter {Xt(-)}ogth,

T
/ U Xy, Xe(Y)dt | — cmsep p(snr) > (1 — ¢) - minimax(P, snr)
0

for all P € P with the possible exception of sources in a subset B C P where

’UJ*(B) <e- 2—5-minimax(77,snr)7

w™* being the capacity achieving prior
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Example

Given:

orthonormal signal set {o:(t),0 <t < T},

Xt = ZBZ’ - 04 (1)
i=1

P = {laWS Pon X' : EpHBH2 <nB and Ep| Bl < na}

max [(X1; Y1) = 1
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Example (cont.)

T
Y,L-:/ bi(D)dY; 1<i<n
0
are sufficient statistics for Y7,
(X1 Yy =1(B™ Y™
—
max I (X1, V?) = max I(B™;Y™) = max{I(B;Y) : B < 5,P(B=0)> (1 —a)}

latter considered and numerically solved in:

Lei Zhang and Dongning Guo, “Capacity of Gaussian Channels with Duty Cycle
and Power Constraints”, IEEE Int. Symposium on Information Theory 2011
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Example (cont.)

thus the minimax filter here is the Bayes filter assuming:

X; =) B ilt)
1=1

where B} are iid according to the capacity achieving distribution of [Zhang and Guo, 2011]

cf. [Albert No + T.W.,, ISIT 201 3]...
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(well) beyond Gaussian noise

® Poisson channel

® | evy-type channels:
® |nput-Output relationship expressed via Levy-
type stochastic integral

® can obtain formulae via Levy-Khintchine-type
decompositions
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v information

control

networks
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The presence of Feedback




The presence of Feedback

® what of what we’ve seen carries over to
presence of feedback?




Duncan

dY, = X,dt +dW,, 0<t<T

W is standard white Gaussian noise, independent of X

'Duncan 1970]:

1 T
[(XT: Y1) = 5 F / (X, — E[X,|Y*)dt
0

Breaks down in presence of feedback!
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cont time directed info

[W,, Permuter, Kim 2012]

I(Xg =Yy ) :=infl (Xg =Yy )

where

(X" —-Y™") &) I(XLY)y
1=1




Duncan with feedback

Theorem [, Permuter, Kim 2012]

Let {(X;,By)}_, be adapted to the filtration {F;}l_,, where X! is a signal of finite average power

fOT E[X?])dt < oo and Bl is a standard Brownian motion. Let Y, be the output of the AWGN channel whose

input is Xép and whose noise is driven by Bép , Le.,

Suppose that the regularity assumptions of Proposition 2 are satisfied for all 0 <t <T. Then

: / E[(X, — BX|Y{))?]dt = I(XT = ¥)

compare with [Kadota, Zakai, Ziv 1971]
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GSV in continuous time

dY, = X, dt +dW,, 0<t<T

d 1

aI(V) = 5 mmse(7)

or in its integral version

1 snr
[(snr) = 5/ mmse(y)d~y
0




GSV in continuous time

dY, = X, dt +dW,, 0<t<T

d 1

aI(V) = 5 mmse(7)

or in its integral version

1 snr
[(snr) = 5/ mmse(y)d~y
0

Breaks down in presence of feedback




GSV in continuous time
with DI?

11

snr
I(XT - YT 5 / mmse(y)d~y
0

No. In general

1 snr
I(XT syl £ 5/ mmse(y)d~y
0

and so

1

snr
cmmse(snr) —/ mmse(7y)d~y
snr /g

l.e., breakdown in presence of feedback
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Mismatched setting

a fortiori, in presence of feedback, in general

1 snr

cmsep g(snr) 7 onr msep,Q(7y)dy
0




Mismatched setting

a fortiori, in presence of feedback, in general

1 snr

cmsepg(snr) 7 onr msep,q(y)dy
0

end of story?
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Mismatched setting
(cont.)

cmsep g —cmsep p = D(Pyr||Qyr)

holds with or without FB, appears in TW2010 implicitly

and explicitly in workshop book chapter
[Asnani,Venkat, WV. 201 2]

(why?)




implications and apps

® minimax estimation setting carries over

® directed info maximization instead of
mutual info but same idea

® similar extensions to the more general
channels
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v information

v control

networks
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Distributed estimation
(known source)

X ~ Px

known source

>

network
noise

~N

/ " Xl 1)

> Y, X;(V;)

\ Y, X (Vo)




Distributed estimation

X ~ Px

known source

>

\_

network
noise

~N

(known source)

/ 1, Xl (Yl)

> Y, X;(V;)

J

\ Y, X (Vo)

can (and should) be greedy!




X ~PxeP

Distributed estimation
(source uncertainty)

source
uncertainty

>

network
noise

~N

/ 1, Xl (Yl)

> Y, X;(V;)

\ Y, X (Vo)




Distributed estimation
(source uncertainty)

/ 1, Xl (Yl)

> Y, X;(V;)

f ~
. R nethorI<
source Nnolise
uncertainty

\_

J

\ Y, X (Vo)

should we be greedy?




Distributed estimation
(source uncertainty)

p
. R nethorI<
source Nnolise
uncertainty

\_

~N

/ 1, Xl (Yl)

> Y, X;(V;)

J

\ Y, X (Vo)

should we be greedy?
no! (in general)




Distributed estimation
(source uncertainty)

1 \/y Yl’Xl(Yl)

X PP R nethorI< > Y. XY
source NOISE ; ;
uncertainty A

\ )\ Y, X, (Yn)

should we be greedy?

no! (in general)
yes!

(in causal estimation over Gaussian, Poisson, or general Levy-type noise)

minimax estimation for each observation separately
would be essentially optimal
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v information

v’ control

v.  networks
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conclusion

® relations between mutual information, relative
entropy, and estimation

¢ findings of pure estimation theoretic significance
e allow the transfer of tools
® much carries over to presence of feedback

® implications for networks
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