Closed-Loop Stabilization Over a Gaussian Interference Channel

Ali Zaidi

Joint work with: T. Oechtering, S. Yüksel, and M. Skoglund

KTH, Sweden

October 2, 2012

Outline

- Introduction
 - Problem Setup
 - Related Works
- Main Part
 - Necessary Condition for Stabilization
 - Sufficient Condition for Stability
 - Numerical Results
 - On Optimality of Linear Policies
- Conclusion

Closed-loop System

Two discrete-time LTI systems (plants)

$$X_{i,t+1} = \lambda_i X_{i,t} + U_{i,t} + W_{i,t}, \qquad t \ge 0, \quad i = 1, 2$$

- The initial states $X_{i,0}$, have arbitrary pdfs with finite variance.
- Variance of $X_{i,t}$ is denoted by $\alpha_{i,t}$.
- Cross correlation coefficient, $\rho_t := \mathbb{E}[X_{1,t}X_{2,t}]/\sqrt{\alpha_{1,t}\alpha_{2,t}}$.
- Process noise, $W_{i,t} \sim \mathcal{N}(0, n_w)$.
- The open loop systems are unstable, $\lambda_i > 1$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Control Over Interference Channel

- $Z_{1,t} \sim \mathcal{N}(0, N)$ and $Z_{2,t} \sim \mathcal{N}(0, N)$ are white noise components.
- Noise cross-correlation coefficient : $\rho_{\it Z} \triangleq \frac{\mathbb{E}[Z_{1,t}Z_{2,t}]}{N} \in [-1,1]$
- Cross channel gain, $h \in \mathbb{R}_+$.

<ロ > < @ > < 重 > < 重 > 、 重 ・ り へ で

Control Over Interference Channel

• The *i*-th sensor policy $f_{i,t}$:

$$S_{i,t} = f_{i,t}(X_{i,[0,t]}), \qquad ext{with } \lim_{T o \infty} rac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[S_{i,t}^2] \leq P,$$

- The *i*-th controller receives, $R_{i,t} = S_{i,t} + hS_{j,t} + Z_{i,t}$.
- The *i*-th controller policy, $U_{i,t} = \pi_{i,t}(R_{i,[0,t]})$.

Closed-loop System

Objective: Find conditions on $\{\lambda_1, \lambda_2\}$ such that the *remote controllers* can *mean square stabilize* the two systems over the given Interference Channel.

Definition: Mean Square Stability

A system is said to be *mean square stable* if there exists a constant $M < \infty$ such that $\mathbb{E}[||X_t||^2] < M$ for all t.

Related Works: On Control Over Gaussian channels

- R. Bansal and T. Başar
 - Simultaneous Design of Measurement and Control Strategies for Stochastic Systems with Feedback. *Automatica*,1989.
- S. Tatikonda, A. Sahai, and S. Mitter
 - Stochastic Linear Control Over a Communication Channel. *IEEE Trans. on Automatic Control*, 2004.
- Braslavsky, R. Middleton, and J. Freudenberg,
 - Feedback Stabilization Over Signal-to-Noise Ratio Constrained Channels . *IEEE Trans. Automat. Control*, 2008.
- S. Yüksel and T. Başar
 - Control Over Noisy Forward and Reverse Channels. *IEEE Trans. Automat. Control*, 2011.
- G. Lipsa and N. C. Martins
 - Optimal Memoryless Control of a Delay in Gaussian Noise: A Simple Counterexample. *Automatica*, 2011.

On Coding Schemes for Gaussian Channels

N. Elia

When Bode meets Shannon: controloriented feedback communication schemes. *IEEE Trans. Autom. Control.* 2004.

Schalkwijk and Kailath

A coding scheme for additive noise channels with feedback–I: no bandwidth constraint. *IEEE Trans. Inform. Theory*, 1966.

Gerhard Kramer

Feedback strategies for white Gaussian interference networks. *IEEE Trans. Inform. Theory*, 2002.

M. Gastpar, A. Lapidoth, and M. Wigger

When feedback doubles the prelog in AWGN networks. *IEEE Trans. Inform. Theory*, submitted.

Necessary Condition for Stabilization

Theorem

The two LTI systems can be mean square stabilized over the given symmetric Gaussian interference channel only if

$$\log\left(|\lambda_i|\right) \leq \frac{1}{2}\log\left(1 + \frac{P\left(1+h\right)^2}{N}\right), \quad i = 1, 2.$$

Ali Zaidi Joint work with: T. Oechtering, S.

Proof:Necessary Condition

Lemma

The i-th linear system can be mean square stabilized over the Gaussian interference channel only if

$$\log\left(|\lambda_i|\right) \leq \liminf_{T \to \infty} \frac{1}{T} I\left(S_{i,[0,T-1]} \to R_{i,[0,T-1]}\right), \quad i = 1, 2.$$

Directed information:

$$I\left(S_{i,[0,T-1]} \to R_{i,[0,T-1]}\right) = \sum_{t=0}^{T-1} I\left(S_{i,[0,t]}; R_{i,t} | R_{i,[0,t-1]}\right).$$

Characterization of information channels for aymptotic mean stationarity and stochastic stability of non-stationary linear systems. *IEEE Trans. Inform. Theory*, To appear.

Zaidi, Oechtering, Yüksel, and Skoglund Stabilization of linear systems over Gaussian relay networks. *IEEE Trans. Autom.*

Control Submitted June 2012

Proof:Necessary Condition

$$I\left(S_{i,[0,T-1]} \to R_{i,[0,T-1]}\right) \overset{(a)}{\leq} I\left(S_{i,[0,T-1]}; R_{i,[0,T-1]}\right) \\ \overset{(b)}{\leq} I\left(S_{1,[0,T-1]}, S_{2,[0,T-1]}; R_{i,[0,T-1]}\right) \\ \overset{(c)}{=} h\left(R_{i,[0,T-1]}\right) - h\left(R_{i,[0,T-1]}|S_{1,[0,T-1]}, S_{2,[0,T-1]}\right) \\ = h\left(R_{i,[0,T-1]}\right) - h\left(Z_{i,[0,T-1]}\right) \overset{(d)}{=} \sum_{t=0}^{T-1} \left[h\left(R_{i,t}|R_{i,[0,t-1]}\right) - h\left(Z_{i,t}\right)\right] \\ \overset{(e)}{\leq} \sum_{t=0}^{T-1} \left[h\left(R_{i,t}\right) - h\left(Z_{i,t}\right)\right] \\ \overset{(f)}{=} \sum_{t=0}^{T-1} \frac{1}{2} \log \left(1 + \frac{P\left(1 + h^2 + 2h\rho_t\right)}{N}\right) \overset{(g)}{\leq} \frac{T}{2} \log \left(1 + \frac{P\left(1 + h\right)^2}{N}\right).$$

◆ロト ◆部 ト ◆差 ト ◆差 と の へ (で)

Proof: Necessary Condition

We have shown that:

$$I\left(S_{i,[0,T-1]} \to R_{i,[0,T-1]}\right) \le \frac{T}{2}\log\left(1 + \frac{P\left(1+h\right)^2}{N}\right) \tag{1}$$

Lemma

The i-th linear system can be mean square stabilized over the Gaussian interference channel only if

$$\log\left(|\lambda_i|\right) \leq \liminf_{T \to \infty} \frac{1}{T} I\left(S_{i,[0,T-1]} \to R_{i,[0,T-1]}\right),\tag{2}$$

• Using (1) in (2), we get:

$$\log\left(\left|\lambda_{i}\right|\right) \leq \frac{1}{2}\log\left(1 + \frac{P\left(1 + h\right)^{2}}{N}\right), \quad i = 1, 2. \quad \Box$$

12 / 25

Sufficient Condition for Stability

Theorem (Sufficient condition)

The two LTI systems can be mean square stabilized over the given white Gaussian interference channel if

$$\log(\lambda_i) < \frac{1}{2}\log\left(\frac{P\left(1+h^2+2h\rho^{\star}\right)+N}{Ph^2\left(1-\rho^{\star 2}\right)+N}\right),$$

where ρ^\star is the largest among all the roots in the interval [0,1] of the following two fourth order polynomials

$$f_1(\rho) := \rho^4 + a_3 \rho^3 + a_2 \rho^2 + a_1 \rho + a_0,$$

$$f_2(\rho) := \rho^4 + b_3 \rho^3 + b_2 \rho^2 + b_1 \rho + b_0,$$

where $\{a_i, b_i\}$ are given on the next slide.

401491451451 5 000

Main Result-stability result

Theorem (Sufficient condition) - Continued

$$\begin{aligned} a_3 &= \frac{N}{2hP}, \quad a_2 &= -2 - \frac{N(4 + h\rho_z)}{2h^2P}, \\ a_1 &= -\frac{N(1 + 2h^2 + 2h\rho_z)}{2h^3P} - \frac{N^2}{h^3P^2}, \\ a_0 &= 1 + \frac{N(2h - \rho_z)}{2h^3P}, \quad b_3 &= \frac{2h^2P + 2P + N}{2hP}, \\ b_2 &= \frac{N\rho_z}{2hP}, \quad b_1 &= -\frac{(1 + h^2)}{h} - \frac{N(1 + 2\rho_z - 2h^2)}{2h^3P}, \\ b_0 &= -1 - \frac{N(2h - \rho_z)}{2h^3P}. \end{aligned}$$

Different polynomials for noisy and noiseless systems.

Proof: Initialization

Initial time step, t = 0:

- \mathcal{E}_1 transmits $S_{1,0}=\sqrt{rac{P}{lpha_{1,0}}}X_{1,0}.$
- \mathcal{E}_2 doesn't transmit, i.e., $S_{2,0} = 0$.
- C_1 receives $R_{1,0} = S_{1,0} + Z_{1,0}$, and estimates

$$\hat{X}_{1,0} = \sqrt{\frac{\alpha_{1,0}}{P}} R_{1,0} = X_{1,0} + \sqrt{\frac{\alpha_{1,0}}{P}} Z_{1,0}$$

ullet \mathcal{C}_1 takes an action $U_{1,0}=-\lambda_1\hat{X}_{1,0}$

$$X_{1,1} = \lambda_1(X_{1,0} - \hat{X}_{1,0}) + W_{1,0} = \sqrt{\frac{\alpha_{1,0}}{P}} Z_{1,0} + W_{1,0}.$$

- \Rightarrow New plant state $X_{1,1}$ is zero mean Gaussian distributed.
 - C_2 doesn't take any action, i.e., $U_{2,0} = 0$.

Proof: Initialization

Initial time step, t = 1:

- \mathcal{E}_1 doesn't transmit, i.e., $S_{1.0} = 0$.
- \mathcal{E}_2 transmits $S_{2,1} = \sqrt{\frac{P}{lpha_{2,1}}} X_{2,1}.$
- C_2 receives $R_{2,1} = S_{2,1} + Z_{2,1}$, and estimates

$$\hat{X}_{2,1} = \sqrt{\frac{\alpha_{2,1}}{P}} R_{2,1} = X_{2,1} + \sqrt{\frac{\alpha_{2,1}}{P}} Z_{2,1}$$

- C_1 doesn't take any action, i.e., $U_{1,1} = 0$.
- C_2 takes an action $U_{2,1} = -\lambda_2 \hat{X}_{2,1}$

$$X_{2,2} = \lambda_2(X_{2,1} - \hat{X}_{2,1}) + W_{2,1} = \sqrt{\frac{\alpha_{2,1}}{P}} Z_{2,1} + W_{2,1}.$$

 \Rightarrow New plant state $X_{2,2}$ is zero mean Gaussian distributed.

Proof: Further transmissions

Further time steps $t \ge 2$:

- ullet \mathcal{E}_1 transmits $S_{1,t} = \sqrt{rac{P}{lpha_{1,t}}} X_{1,t}$.
- \mathcal{E}_2 transmits $S_{2,t} = \sqrt{\frac{P}{\alpha_{2,t}}} X_{2,t} \mathrm{sgn}(\rho_t)$.
- C_i receives $R_{i,t} = S_{i,t} + hS_{i,t} + Z_{i,t}$, and estimates the

$$\hat{X}_{i,t} = \mathbb{E}[X_{i,t}|R_t] = \frac{\mathbb{E}[R_{i,t}X_{i,t}]}{\mathbb{E}[R_{i,t}^2]}R_{i,t},$$

- C_i takes an action: $U_{i,t} = -\lambda_i \hat{X}_{i,t}$ for the plant i.
- The new states are: $X_{i,t+1} = \lambda_i (X_{i,t} \hat{X}_{i,t}) + W_{i,t}$.

Proof: Second Moment of State Process

The second moment of the *i*-th state process is given by

$$\alpha_{i,t+1} = \alpha_{i,t} \lambda_i^2 \left(\frac{Ph^2 (1 - |\rho_t|^2) + N}{P(1 + h^2 + 2h|\rho_t|) + N} \right) + n_w,$$

where

$$\rho_{t+1} = \operatorname{sgn}(\rho_t) \lambda_1 \lambda_2 \sqrt{\frac{\alpha_{1,t} \alpha_{2,t}}{\alpha_{1,t+1} \alpha_{2,t+1}}} \left(-2 \frac{P(h + |\rho_t|) (1 + |\rho_t|)}{P(1 + h^2 + 2h|\rho_t|) + N} + |\rho_t| + \frac{P(1 + h|\rho_t|)^2 (2hP + P|\rho_t|(1 + h^2) + N\rho_z)}{(P(1 + h^2 + 2h|\rho_t|) + N)^2} \right)$$

We show that $\alpha_{i,t} \to M$ as $t \to \infty$ if

$$\log(\lambda_i) < \frac{1}{2}\log\left(\frac{P\left(1+h^2+2h\rho^{\star}\right)+N}{Ph^2\left(1-\rho^{\star2}\right)+N}\right) \square$$

Effect of Interference and Noise Correlation

Effect of Interference and Noise Correlation

Illustration of cross correlation of the state processes

On optimality of linear policies

Necessary Condition:

$$\log\left(\lambda_i\right) \leq \frac{1}{2}\log\left(1 + \frac{P\left(1+h\right)^2}{N}\right), \quad i = 1, 2.$$

Sufficient Condition:

$$\log(\lambda_i) < \frac{1}{2}\log\left(\frac{P\left(1+h^2+2h\rho^{\star}\right)+N}{Ph^2\left(1-\rho^{\star 2}\right)+N}\right), \quad i=1,2.$$

• Linear policies are optimal if $\rho^* = 1$.

On optimality of linear policies

Linear policies are optimal for the following special cases:

- - There might be other cases where linear scheme is optimal.

Other Multi-user Setups

A. Zaidi, T. Oechtering, and M. Skoglund.

Sufficient Conditions for Closed-Loop Control Over Multiple-Access and Broadcast Channels

IEEE Conf. on Decision and Control (CDC), December 2010 A Reveal to the second second

Concluding Remarks

Problem: Mean square stabilizing two discrete time LTI systems over a white Gaussian interference channel.

- Necessary condition using information theoretic tools.
- Sufficient conditions using delay-free linear time varying scheme (noisy and noiseless cases).
- Behavior under the proposed scheme:
 - Stabilizability improves as the interference gets very strong.
 - Highly correlated state processes in strong interference.
 - Negative noise correlation helps in general.
 - For $\rho_z = -1$, there is a boost in stabilizability.
- Special cases where linear is optimal. Other cases?

Thank you for your attention!