
Vertical Integration in Tool Chains for
Modeling Simulation and

Optimization of Large-Scale Systems

Johan Åkesson, Modelon AB/Lund University

Thanks to
Joel Andersson, Niklas Andersson, Magnus Gäfvert, Staffan Haugwitz,

Görel Hedin, Per-Ola Larsson, Alexandra Lind, Kilian Link,
Fredrik Magnusson, Elin Sällberg, Stephane Velut

In 2006…

The Landscape

Outline

• Modelica
• Application examples
• Extension example
• Interface example
• Towards a vertically integrated tool chain
• Challenges

What is Modelica?

• A language for modeling of complex
heterogeneous physical systems
– Open language

• Modelica Association (www.modelica.org)
– Several tools supporting Modelica

• Dymola
• OpenModelica (free)
• MosiLab
• Scilab/Scicos (free)

– Extensive (free) standard library
• Mechanical, electrical, thermal etc.

http://www.modelica.org/

Key Features of Modelica

• Declarative equation-based modeling
– Text book style equations

• Multi-domain modeling
– Heterogeneous modeling

• Object oriented modeling
– Inheritance and generics

• Software component model
– Instances and (acausal) connections

• Graphical and textual modeling

A Simple Modelica model

model FirstOrder
 input Real u;
 parameter Real b = 1;
 parameter Real a = -1;
 Real x(start=1);
equation
 der(x) = a*x + b*u;
end FirstOrder;

Parameter declaration

Variable declaration

Initialization

Derivative operator

Equation

Class definition

Differential equation

x(t) = ax(t) + bu(t)

© Johan Åkesson 2008

Hybrid modeling
class BouncingBall //A model of a bouncing ball
 parameter Real g = 9.81; //Acceleration due to gravity
 parameter Real e = 0.9; //Elasticity coefficient
 Real pos(start=1); //Position of the ball
 Real vel(start=0); //Velocity of the ball
equation
 der(pos) = vel; // Newtons second law
 der(vel) = -g;
 when pos <=0 then
 reinit(vel,-e*pre(vel));
 end when;
end BouncingBall;

class BBex
 BouncingBall eBall;
 BouncingBall mBall(g=1.62);
end BBex;

© Johan Åkesson 2008

Graphical Modeling
model MotorControl
 Modelica.Mechanics.Rotational.Inertia inertia;

 Modelica.Mechanics.Rotational.Sensors.SpeedSensor speedSensor;
 Modelica.Electrical.Machines.BasicMachines.DCMachines.DC_PermanentMagnet DCPM;
 Modelica.Electrical.Analog.Basic.Ground ground;

 Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltage;
 Modelica.Blocks.Math.Feedback feedback;
 Modelica.Blocks.Sources.Ramp ramp(height=100, startTime=1);

 Modelica.Blocks.Continuous.PI PI(k=-2);
equation
 connect(inertia.flange_b, speedSensor.flange_a);

 connect(DCPM.flange_a, inertia.flange_a);
 connect(speedSensor.w, feedback.u2);
 connect(ramp.y, feedback.u1);

 connect(signalVoltage.n, DCPM.pin_ap);
 connect(signalVoltage.p, ground.p);
 connect(ground.p, DCPM.pin_an);

 connect(feedback.y, PI.u);
 connect(PI.y, signalVoltage.v);
end MotorControl;

A Modelica-based
Tool Chain

Symbolic maniulation
Index reduction

Analytic solution of
simple equations

Code generation
Residual equations
Analytic Jacobians

Numerical solvers
NLP algorithms

Integrators

Result
Post processing

Visualization

Flattening of Modelica
source code

Compiler front-end
Unstructured

Flat DAE

Transformed
flat DAE

C code

Solution
profiles

Industrial Application I
Power Plant Start-up Optimization

Continuous time states: 39

Scalar equations: 569

Algebraic variables: 530

NLP equations: 26824

• Start-up optimization of combined
cycle power plants

• Reduce start-up time
• Model-based optimization
• Siemens AG, LU, Modelon

collaboration

Industrial Application I
Power Plant Start-up Optimization

☺ Design-patterns from Modelica
media model libraries applied to
optimization-friendly models

☺ Intuitive high-level descriptions of
dynamic optimization problem
appreciated by users – a vehicle for
communicating ideas

☹ Large effort to develop models
suitable for optimization

☹ Scaling of problem significantly more
challenging than in simulation

☹ Convergence and robustness of
numerical algorithms

Lessons learnt
• Modeling for optimization is

significantly different from modeling
for simulation

• Numerical optimization algortihm is
significantly less robust than
simulation algorithm

• Scaling of problem and initial
guesses have major impact

Industrial Application II
Grade Changes in Polyethylene Production
• Optimization of economics of

polyethylene grade changes
• Model calibration to data
• Modeling with Modelica and Optimica
• Development of end-user GUI
• PIC-LU – Lund University and Borealis

Industrial Application II
Grade Changes in Polyethylene Production

☺ Model reuse across different
computations

☺ High-level model and optimization
problem formulation enabled
promoted focus on problem
formulation

☺ Custom GUI in Python appreciated
by end-users

☹ Careful manual scaling of problem
required for convergence

☹ Difficult to tailor collocation
optimization formulation to problem
description

☹ Non-standard economic cost difficult
to handle

 Lessons learnt

• Significant advantages from
Modelica technology – same model
used for steady-state, dynamic
simulation, calibration and
optimization

• Increased interaction with
discretization sometimes important

Extension Example – Optimica
• High-level description of

optimization problems
– Steady-state
– Dynamic

• Extension to Modelica
– Optimization of physical

models

☺ High-level problem descriptions
promote focus on formulation rather
than encoding

☺ New users without optimization
experience quickly gets up to speed

☺ Model reuse for different usages
☺ Automatic model transformation

reduce user effort

☹ Tailoring of problem discretization
difficult, but sometimes needed

☹ Power-users of dynamic optimization
tools feel constrained

Lessons learnt
• High-level descriptions make

optimization technology available to
non-experts

• Automatic model transformation
reduces design cycle times

• Modern compiler construction
technology is accessible to non-
experts (e.g., JastAdd)

Extension Example – Optimica

Towards a vertically integrated toolchain

Interactive model evaluation and
tranformation framework

Symbolic manipulation
Automatic differentiation

Model discretization
CasADi

Symbolic
preprocessing

Code generation

Numerical solvers
NLP algorithms

Integrators

Interactive user environment
Post processing

Visualization
Python

Flattening of Modelica
source code

Compiler front-end
Unstructured

Flat DAE

XML code

Solution
profiles

Interfacing Example –
Modelica, XML Models and CasADi
• Replace C implementation of a

collocation algorithm
• Intermediate symbolic model format in

XML
• Decreased solution times by an order

of magnitude
• Decreased implementation time by an

order of magnitude
• Significantly increased flexibilty
• Tailoring to specific problems

☺ Rapid prototyping with interactive
model evaluation and
transformation frameworks

☺ Flexibility to tailor model
descretization to problem
formulation

☺ Inspiration for future versions of
Optimica

☹ Partial problem formulation in high-
level format

☹ Some of the overview lost when
parts of the problem is formulated in
Modelica/Optimica some part is in
scripting language

Lessons learnt
• Interactive model transformation

powerful
• Symbolic model exchange format

needed (standardization on-going)
• High performance and flexibility can

be combined

Interfacing Example –
Modelica, XML Models and CasADi

Challenges
• How do we make advanced algorithms in systems

design in general and in optimization in particular
PhD-free?

• How do we combine declarative modeling
languages with ideas from interactive model
transformation/evaluation frameworks?

• How do we propagate consistent
error/diagnostics through the tool chain?

• Open interfaces and interoperability, FMI and
extensions

• Classify models applicable to different solution
algorithms

Conclusions
• In users’ perception, current optimization algorithms for

large-scale non-linear dynamic systems requires high level of
expertise

• Very different cultures and best practices in simulation and
optimization communities – expectation management

• Users sometimes need to/desire to to interact with both
mathematical model and solution algorithm implementation

• Challenges in usability and robustness of numerical algorithms
• Challenges in vertically integrated tool chains – languages and

open interfaces and tool decoupling

Thank you!

Questions, comments?

	Vertical Integration in Tool Chains for Modeling Simulation and Optimization of Large-Scale Systems
	In 2006…
	The Landscape
	Outline
	What is Modelica?
	Key Features of Modelica
	A Simple Modelica model
	Hybrid modeling
	Graphical Modeling
	A Modelica-based �Tool Chain
	Industrial Application I�Power Plant Start-up Optimization
	Industrial Application I�Power Plant Start-up Optimization
	Industrial Application II�Grade Changes in Polyethylene Production
	Industrial Application II�Grade Changes in Polyethylene Production
	Extension Example – Optimica
	Extension Example – Optimica
	Towards a vertically integrated toolchain
	Interfacing Example – �Modelica, XML Models and CasADi
	Interfacing Example – �Modelica, XML Models and CasADi
	Challenges
	Conclusions
	Slide Number 22

