Dynamical models for industrial controls: use cases and challenges

Fernando D'Amato

Principal Engineer, Controls, Electronics & Signal Processing General Electric Global Research

LCCC workshop: Systems Design Meets Equation-Based Languages

Outline

- Overview of controls at General Electric
- Train trip optimization example
- Power plant predictive control example
- From control system challenge to model challenge
- Conclusions

GE ... a heritage of innovation

- Founded in 1892
- 300,000 employees worldwide
- \$150 billion in annual revenues
- Only company in Dow Jones index originally listed in 1896

GE today

Aligned for growth

Expanding global presence in research

3000 technologists worldwide

AMSTC Ann Arbor, MI

Global Research HQ Niskayuna, NY

Global Research - Europe Munich, Germany

China Technology Center Shanghai, China

Brazil Technology Center Rio de Janeiro, Brazil

John F. Welch Technology Center Bangalore, India

magination at work

© 2012 General Electric Company

System Design & Equation-based Languages LCCC - Lund Sep 20, 2012

Products with Controls

Controls at GE Research Labs

Supervisory Control & **Systems Integration**

Real-Time Optimization & Controls

Model Based Controls

Real-Time Embedded Systems

Radio Freq. Instrumentation & **Systems**

Advanced Communication **Systems**

© 2012 General Electric Company

- System Integration & Simulation
- Optimal Dispatch
- System validation & Verification
- Operation Critical Controls
- Dynamic Plant Optimization
- Predictive Controls
- Safety Critical Controls
- Advanced Multivariable Controls
- Estimation
- Hardware Architectures
- Real-Time Performance
- Hardware in the loop
- Electromagnetic Systems
- Integrated Instrumentation
- Novel Sensing Systems
- Communication System Networks
- Software Defined Radio •
- Signal Processing •
- 7 Source Coding and Compression System Design & Equation-based Languages LCCC - Lund Sep 20, 2012

Transportation: Optimal train control

Optimize fuel utilization in every trip

tem Design & Equation-based Language LCCC - Lund Sep 20, 201

2005

2005

The Problem

Online calculation of optimal acceleration and breaking

for fuel efficiency

Constraints

- Arrival timing
- Speed limits (mile per mile)
- Fuel reserves
- Maximum internal forces

Uncertainty/Variability

- Train weight
- Track conditions
- Other trains operation

q

Approach: Online optimal control

Implementation

Results

Improvements from optimal control

Entitlement curve

Impact

magination at work

- Runs on BSNF, CP, CSX, CN, coal, grain & general merchandise
 - 97 Subdivisions, 17000 Track Miles
 - 10+ % system-wide average fuel savings, no velocity impact

Power Generation: Automated startup of combined cycle plants

Electrical

Generator

Steam

Turbine

Steam Generator

© 2012 General Electric Company

Gas Turbine

> n Design & Equation-based Languages LCCC - Lund Sep 20, 2012

The startup problem

Online calculation of optimal startup trajectories

Constraints

- Thermal stresses (multiple)
- Turbine clearances
- Material temperatures
- Valve slew rates
- Drum levels
- Bearing thrust

magination at work

• Emissions

• ...

Approach: Model Predictive Control

MPC framework HP & IP maximum rotor stresses Final CC load GT load MPC Controller reference Optimize Control GT. HRSG. ST models GT loadina System HP & IP rotor stresses over Time Horizon State estimation 4easurements Measurements Steam & metal Temperatures, Steam Pressures Prediction horizon include 80 **Gas Turbine load** 60 dominant dynamics 25 minutes Receding horizon to address variation and **Delayed effects of** control actions uncertainty 100 80 Stress constraints

magina

Simplified plant model

• Reduced validity range due to model simplifications

Variation

- Plants with 1, 2 and 3 gas turbines
- Site specific temperature constraints
- Combinatorial start types with multiple turbines

© 2012 General Electric Company

Approach: Optimization formulation

Input Data

1. Plant details

- Plant configuration
- Type of start
- Main controller algorithms
- Allowed stress

2. End of start

Desired plant load

3. Combined cycle physics

- Turbine design parametersSteam generator time
- Steam generator time constants
- Allowable stress levels

Physics based optimization

$$\frac{1}{2} \sum_{k=1}^{N-1} \left[(x_k - x_{ref})^T Q_k (x_k - x_{ref}) + (u_k - u_{ref})^T R_k (u_k - u_{ref})^T \right]$$

$$+\frac{1}{2}\left(x_N - x_{\mathrm{ref}}\right)^T Q_N \left(x_N - x_{\mathrm{ref}}\right)$$

subject to
$$x_{k+1} =$$

$$A_k x_k + B_k u_k + F_k$$

dynamics

$$A_k = \frac{\partial f}{\partial x}\Big|_{\bar{x}_k, \bar{u}_k} B_k = \frac{\partial f}{\partial u}\Big|_{\bar{x}_k, \bar{u}_k}$$

© 2012 General Electric Company

Calculated magnitudes

Gas turbine load references

• Reference MW and exhaust temperature for 1, 2 or 3 turbines

Computational approach

- Euler discretization scheme
- Finite differencing sensitivities
- SQP optimization

System Design & Equation-based Languages LCCC - Lund Sep 20, 2012

Implementation

Results

Typical benefits per start

- Time savings:
- Fuel (NG) savings:
- Fuel cost reduction:
- NOx reduction:

1 hour 70,000 lbm \$10K

140 lbm

Virtually no impact on life

18

Trends

Calculations getting faster & cheaper

- Computing HW performance 1
- Algorithms performance
- Computing cost

Increasing performance demands

- Competitiveness in market place
- Increased operation flexibility
- Transient efficiency
- Environmental regulations

Advanced Model Based Controls, the answer?

- More detailed physical models
- Rely more on optimization

Significant challenges ahead ...

System Design & Equation-based Languages LCCC - Lund Sep 20, 2012

Industrial Control Development

Challenges for model-based control products

- Time to market
- Cost & complexity \rightarrow development, deployment, maintenance

© 2012 General Electric Company

How can modeling help? SW reliability

WANT: Embed complex calculations

- Accurate models
- Online optimization process

NEED: Aids to get embedded code quality

- SW infrastructure
- Rigorous coding practice
- Testing as you go

RTOS requirements	Modeling needs
Memory management	SW refactoring
Min math errors (i.e. MISRA compatible)	Code discipline (i.e., division by zero checks & handling)
	SW complexity analysis & policies
	SW test design (early, often)
Time consistency	Reduce/remove iterative calculations
	Profiling tools

How can modeling help? Function reliability & maintainability Systematic model reduction tools

Maintainability requirements	Modeling needs
Physical correctness	Modeling discipline, assumptions tracking
	Functional verification during model development
	Continuity / smoothness of physical magnitudes
Low complexity	Integrated model reduction
	Tools for parameter reduction
	Tools to analyze/limit model complexity
Error diagnostics and traceability	Diagnostics capability in SW architecture
Consistency	Robust initialization tools

magination at work

WANT: Ensure physics is captured (always)

NEED: Validation tools

•

•

•

Test every branch?

Model compatibility checks

How can modeling help? Product dev. peed

WANT: Deployment speed

• Time to assemble, reconfigure system & validate system models

NEED: Requisition & tuning tools

- User skills << developer skills
- Remove the PhD out of the loop
- Finite commissioning time
- Execute with limited information

Productization requirements	Modeling needs
Ease for reconfiguration	Configuration tools based on requirements
Fast requisition	Integrated requisition tools with design dbase
	Model tuning tools, i.e. parameter ID
Functional test	Definition of system level test vectors
	Testing plan, auto-testing tools

Summary

- Model Based Control to boost performance in industrial applications
- MBC solutions are as good as models allow
- For MBC to be competitive, models need to
 - Reduce development cost & time
 - Ensure maintainability
- Good modeling practices & tools are essential for viable products

Need tools to accelerate transfer of academic solutions into industrial products

