
Synchronous Control and State Machines in Modelica

Hilding Elmqvist
Dassault Systèmes

Sven Erik Mattsson, Fabien Gaucher, Francois Dupont

Dassault Systèmes

Martin Otter, Bernhard Thiele
DLR

 Slide 2

Content

• Introduction
• Synchronous Features of Modelica

• Synchronous Operators
• Base-clock and Sub-clock Partitioning

• Modelica_Synchronous library
• State Machines
• Conclusions

 Slide 3

Introduction
• Why synchronous features in Modelica 3.3?

model Asynchronous_Modelica32
 Real x(start=0,fixed=true),
 y(start=0,fixed=true), z;
equation
 when sample(0,0.33) then
 x = pre(x)+1;
 end when;
 when sample(0,1/3) then
 y = pre(y)+1;
 end when;
 z = x-y;
end Asynchronous_Modelica32;

model Asynchronous_Modelica33
 Real x(start=0,fixed=true),
 y(start=0,fixed=true), z;
equation
 when Clock(0.33) then
 x = previous(x)+1;
 end when;
 when Clock(1,3) then
 y = previous(y)+1;
 end when;
 z = x-y;
end Asynchronous_Modelica33;

x and y must have
the same clock

Rational number 1/3

z = x-y

• Error Diagnostics for safer systems!

Implicit hold

 Slide 4

Introduction

• Scope of Modelica extended
• Covers complete system descriptions including controllers

• Clocked semantics
• Clock associated with variable type and inferred
• For increased correctness
• Based on ideas from Lucid Synchrone and other synchronous languages
• Extended with multi-rate periodic clocks, varying interval clocks and Boolean

clocks

 Slide 5

Synchronous Features of Modelica

• Plant and Controller Partitioning
• Boundaries between continuous-time and discrete-time equations

defined by operators.
• sample(): samples a continuous-time variable and returns a clocked

discrete-time expression
• hold(): converts from clocked discrete-time to continuous-time by holding the

value between clock ticks
• sample operator may take a Clock argument to define when sampling should

occur

 Slide 6

partial model MassWithSpringDamper
 parameter Modelica.SIunits.Mass m=1;
 parameter Modelica.SIunits.TranslationalSpringConstant k=1;
 parameter Modelica.SIunits.TranslationalDampingConstant d=0.1;
 Modelica.SIunits.Position x(start=1,fixed=true) "Position";
 Modelica.SIunits.Velocity v(start=0,fixed=true) "Velocity";
 Modelica.SIunits.Force f "Force";
equation
 der(x) = v;
 m*der(v) = f - k*x - d*v;
end MassWithSpringDamper;

Mass with Spring Damper

• Consider a continuous-time model

 Slide 7

model SpeedControl
 extends MassWithSpringDamper;
 parameter Real K = 20 "Gain of speed P controller";
 parameter Modelica.SIunits.Velocity vref = 100 "Speed ref.";
 discrete Real vd;
 discrete Real u(start=0);
equation
 // speed sensor
 vd = sample(v, Clock(0.01));

 // P controller for speed
 u = K*(vref-vd);

 // force actuator
 f = hold(u);
end SpeedControl;

Synchronous Controller

• Discrete-time controller

Sample continuous velocity v
with periodic Clock with period=0.01

Hold discrete variable u
between clock ticks

The clock of the equation
is inferred to be the same as for the variable

vd which is the result of sample()

 Slide 8

Discrete-time State Variables

• Operator previous() is used to access the value at the previous clock tick
 (cf pre() in Modelica 3.2)
• Introduces discrete state variable
• Initial value needed

• interval() is used to inquire the actual interval of a clock

 Slide 9

Base-clocks and Sub-clocks

• A Modelica model will typically have several controllers for different parts of
the plant.

• Such controllers might not need synchronization and can have different base
clocks.

• Equations belonging to different base clocks can be implemented by
asynchronous tasks of the used operating system.

• It is also possible to introduce sub-clocks that tick a certain factor slower
than the base clock.

• Such sub-clocks are perfectly synchronized with the base clock, i.e. the
definitions and uses of a variable are sorted in such a way that when sub-
clocks are activated at the same clock tick, then the definition is evaluated
before all the uses.

• New base type, Clock:
 Clock cControl = Clock(0.01);
 Clock cOuter = subSample(cControl, 5);

 Slide 10

Sub and super sampling and phase
model SynchronousOperators
 Real u;

 Real sub;
 Real super;

 Real shift(start=0.5);
 Real back;
equation
 u = sample(time, Clock(0.1));

 sub = subSample(u, 4);
 super = superSample(sub, 2);

 shift = shiftSample(u, 2, 3);
 back = backSample(shift, 1, 3);
end SynchronousOperators;

 Slide 11

Exact Periodic Clocks

• Clocks defined by Real number period are not synchronized:

 Clock c1 = Clock(0.1);
 Clock c2 = superSample(c1,3);
 Clock c3 = Clock(0.1/3); // Not synchronized with c2

• Clocks defined by rational number period are synchronized:

 Clock c1 = Clock(1,10); // period = 1/10
 Clock c2 = superSample(c1,3); // period = 1/30
 Clock c3 = Clock(1,30); // period = 1/30

 Slide 12

Modelica_Synchronous library

• Synchronous language elements of Modelica 3.3
are “low level”:

• Modelica_Synchronous library developed to access language elements in a
convenient way graphically:

 // speed sensor
 vd = sample(v, Clock(0.01));

 // P controller for speed
 u = K*(vref-vd);

 // force actuator
 f = hold(u);

 Slide 13

Blocks that generate clock signals

Generates a periodic clock with a Real period
 parameter Modelica.SIunits.Time period;
 ClockOutput y;
equation
 y = Clock(period);

Generates a periodic clock as an integer multiple
of a resolution (defined by an enumeration).

Code for 20 ms period:
y = superSample(Clock(20), 1000);

Clock with period 20 s super-sample clock with 1000

Generates an event clock: The clock ticks whenever the
continuous-time Boolean input changes from false to true.

y = Clock(u);

period = 20 / 1000 = 20 ms

 Slide 14

Sample and Hold

Holds a clocked signal and generates a continuous-time
signal. Before the first clock tick, the continuous-time output
y is set to parameter y_start

Discrete-time PI controller

Purely algebraic block from
Modelica.Blocks.Math Samples a continuous-time signal

and generates a clocked signal.

y = sample(u, clock); y = sample(u);

y = hold(u);

 Slide 15

Sub- and Super-Sampling

Defines that the output signal is an integer
factor faster as the input signal, using a “hold”
semantics for the signal. By default, this factor
is inferred. It can also be defined explicitly.

y = superSample(u);

 Slide 16

Defines that the output signal is an integer
factor slower as the input signal, picking
every n-th value of the input.

y = subSample(u,factor);

 Slide 17

Varying Interval Clocks

• The first argument of Clock(ticks, resolution) may be time dependent
• Resolution must not be time dependent
• Allowing varying interval clocks
• Can be sub and super sampled and phased

model VaryingClock
 Integer nextInterval(start=1);
 Clock c = Clock(nextInterval, 100);
 Real v(start=0.2);
equation
 when c then
 nextInterval = previous(nextInterval) + 1;
 v = previous(v) + 1;
 end when;
end VaryingClock;

 Slide 18

Boolean Clocks

• Possible to define clocks that tick when a Boolean expression changes from
false to true.

• Assume that a clock shall tick whenever the shaft of a drive train passes
180o.

model BooleanClock
 Modelica.SIunits.Angle angle(start=0,fixed=true);
 Modelica.SIunits.AngularVelocity w(start=0,fixed=true);
 Modelica.SIunits.Torque tau=10;
 parameter Modelica.SIunits.Inertia J=1;
 Modelica.SIunits.Angle offset;
equation
 w = der(angle);
 J*der(w) = tau;
 when Clock(angle >= hold(offset)+Modelica.Constants.pi) then
 offset = sample(angle);
 end when;
end BooleanClock;

 Slide 19

Discretized Continuous Time

• Possible to convert continuous-time partitions to discrete-time
• A powerful feature since in many cases it is no longer necessary to manually

implement discrete-time components
• Build-up a inverse plant model or controller with continuous-time

components and then sample the input signals and hold the output signals.
• And associate a solverMethod with the Clock.

model Discretized
 Real x1(start=0,fixed=true);
 Real x2(start=0,fixed=true);
equation
 der(x1) = -x1 + 1;

 der(x2) = -x2 + sample(1, Clock(Clock(0.5), solverMethod="ExplicitEuler"));
end Discretized;

 Slide 20

State Machines

• Modelica extended to allow modeling of control systems

• Any block without continuous-time equations or algorithms can be a state of
a state machine.

• Transitions between such blocks are represented by a new kind of
connections associated with transition conditions.

• The complete semantics is described using only 13 Modelica equations.
• A cluster of block instances at the same hierarchical level which are coupled

by transition equations constitutes a state machine.
• All parts of a state machine must have the same clock. (We will work on

removing this restriction ,allowing mixing clocks and allowing continuous
equations, in future Modelica versions.)

• One and only one instance in each state machine must be marked as initial
by appearing in an initialState equation.

 Slide 21

A Simple State Machine

outer output i outer output i

inner i

 Slide 22

A Simple State Machine – Modelica Text Representation

model StateMachine1
 inner Integer i(start=0);
 block State1
 outer output Integer i;
 equation
 i = previous(i) + 2;
 end State1;
 State1 state1;

 block State2
 outer output Integer i;
 equation
 i = previous(i) - 1;
 end State2;
 State2 state2;

equation
 initialState(state1);
 transition(state1, state2, i > 10, immediate=false);
 transition(state2, state1, i < 1, immediate=false);
end StateMachine1;

 Slide 23

Merging Variable Definitions

• An outer output declaration means that the equations have access to the
corresponding variable declared inner.

• Needed to maintain the single assignment rule.
• Multiple definitions of such outer variables in different mutually exclusive

states of one state machine need to be merged.
• In each state, the outer output variables (vj) are solved for (exprj) and, for

each such variable, a single definition is automatically formed:
• v := if activeState(state1) then expr1

 elseif activeState(state2) then expr2
 elseif … else last(v)

• last() is a special internal semantic operator returning its input. It is just used

to mark for the sorting that the incidence of its argument should be ignored.
• A start value must be given to the variable if not assigned in the initial state.
• Such a newly created assignment equation might be merged on higher

levels in nested state machines.

 Slide 24

Defining a State machine

transition(from, to, condition, immediate, reset, synchronize, priority)
• This operator defines a transition from instance “from” to instance “to”. The “from” and

“to” instances become states of a state machine.
• The transition fires when condition = true if immediate = true (this is called an

“immediate transition”) or previous(condition) when immediate = false (this is called a
“delayed transition”).

• If reset = true, the states of the target state are reinitialized, i.e. state machines are
restarted in initial state and state variables are reset to their start values.

• If synchronize = true, the transition is disabled until all state machines within the from-
state have reached the final states, i.e. states without outgoing transitions.

• “from” and “to” are block instances and “condition” is a Boolean expression.
• “immediate”, “reset”, and “synchronize” (optional) are of type Boolean, have parametric variability and a default of true, true,

false respectively.
• “priority” (optional) is of type Integer, has parametric variability and a default of 1 (highest priority). Defines the priority of firing

when several transitions could fire.

initialState(state)
• The argument “state” is the block instance that is defined to be the initial state of a

state machine.

 Slide 25

Conditional Data Flows

• Alternative to using outer output variables is to use conditional data flows.

add2

sub1

previ > 10

i < 1

i

block Increment
 extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
 parameter Integer increment;
equation
 y = u + increment;
end Increment;

block Prev
 extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
equation
 y = previous(u);
end Prev;

protected connector (node) i

 Slide 26

Merge of Conditional Data Flows

• It is possible to connect several outputs to inputs if all the outputs come from
states of the same state machine.

 u1 = u2 = … = y1 = y2 = …
 with ui inputs and yi outputs.
• Let variable v represent the signal flow and rewrite the equation above as a

set of equations for ui and a set of assignment equations for v:
• v := if activeState(state1) then y1 else last(v);

v := if activeState(state2) then y2 else last(v);
…
u1 = v
u2 = v
…

• The merge of the definitions of v is then made as described previously:
 v = if activeState(state1) then y1
 elseif activeState(state2) then y2

 elseif … else last(v)
…

 Slide 27

Hierarchical
State Machine Example
 • stateA declares v as ‘outer output’.

• state1 is on an intermediate level
and declares v as ‘inner outer
output’, i.e. matches lower level
outer v by being inner and also
matches higher level inner v by
being outer.

• The top level declares v as inner
and gives the start value.

 Slide 28

Reset and Synchronize

• count is defined with a start
value in state1. It is reset when a
reset transition (v>=20) is made
to state1.

• stateY declares a local counter j.
It is reset at start and as a
consequence of the reset
transition (v>=20) from state2 to
state1.

• The reset of j is deferred until
stateY is entered by transition
(stateX.i>20) although this
transition is not a reset transition.

• Synchronizing the exit from the
two parallel state machines of
state1 is done by using a
synchronized transition.

 Slide 29

Hybrid Automata (Modelica 3.2-, 2006)

model Hybrid1
 Real x(start=1);
 Integer mode(start=1);
 Boolean a=time>2.5;
equation
 if mode == 1 then
 der(x) = 1;
 elseif mode==2 then
 der(x) = -x;
 else
 der(x) = 1+sin(time+0.5);
 end if;

algorithm
 when x>2 and mode==1 then
 mode :=2;
 reinit(x, 2*x);
 elsewhen edge(a) and mode==1 then
 mode :=3;
 elsewhen x<=2 and mode==2 then
 mode :=3;
 reinit(x, 1.5*x);
 elsewhen x>=3 and mode==3 then
 mode :=1;
 reinit(x, 1);
 end when;
end Hybrid1;

1x = x u=

x x= −

[3] / : 1x x≥ =

[2] / : 1.5*x x x≤ =[2] / : 2*x x x> =

a

 Slide 30

Hybrid Automata with Modelica 3.3+ (prototype)

inner Real xstart(start=1, fixed=true);
inner Real x(start=xstart, fixed=true);
Boolean t3=time > 2.5;
Boolean a=edge(t3);

mode1
outer output Real x;
outer output Real xstart;
der(x) = 1;
xstart = 1;

mode2
outer output Real x;
outer output Real xstart;
der(x) = -x;
xstart = 2*x;

mode3
outer output Real x;
outer output Real xstart;
der(x) = 1 + sin(time + 0.5);
xstart = 1.5*x;

a

x >= 3

2: x > 2

x <= 2

1x = x u=

x x= −

[3] / : 1x x≥ =

[2] / : 1.5*x x x≤ =[2] / : 2*x x x> =

a

 Slide 31

Acausal Models in States – Modelica 3.3+

•The equations of each state is
guarded by the activity condition
•Should time variable be stopped
when not active?
•Should time be reset locally in
state by a reset transition?
•Special Boolean operator
exception() to detect a problem in
one model and transition to
another model

 Slide 32

Multiple Acasual Connections
• // C_p_i+brokenDiode_n_i+diode_n_i+load_p_i = 0.0;

• Replaced by:

• C_p_i +
(if activeState(brokenDiode) then brokenDiode_n_i else 0) +
(if activeState(diode) then diode_n_i else 0) +
load_p_i = 0.0;

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

 [V
]

load_v

 Slide 33

Conclusions

• We have introduced synchronous features in Modelica 3.3.
• For a discrete-time variable, its clock is associated with the variable type and

inferencing is supported.
• Special operators have to be used to convert between clocks.
• This gives an additional safety since correct synchronization is guaranteed

by the compiler.

• We have described how state machines can be modeled in Modelica 3.3.
• Instances of blocks connected by transitions with one such block marked as

an initial state constitute a state machine.
• Hierarchical state machines can be defined with reset or resume semantics,

when re-entering a previously executed state.
• Parallel sub-state machines can be synchronized when they reached their

final states.
• Special merge semantics have been defined for multiple outer output

definitions in mutually exclusive states as well as conditional data flows.

	Synchronous Control and State Machines in Modelica
	Content
	Introduction
	Introduction
	Synchronous Features of Modelica�
	Mass with Spring Damper
	Synchronous Controller
	Discrete-time State Variables
	Base-clocks and Sub-clocks
	Sub and super sampling and phase
	Exact Periodic Clocks
	Modelica_Synchronous library
	Slide Number 13
	Sample and Hold
	Sub- and Super-Sampling
	Slide Number 16
	Varying Interval Clocks
	Boolean Clocks
	Discretized Continuous Time
	State Machines
	A Simple State Machine
	A Simple State Machine – Modelica Text Representation
	Merging Variable Definitions
	Defining a State machine
	Conditional Data Flows
	Merge of Conditional Data Flows
	Hierarchical �State Machine Example�
	Reset and Synchronize�
	Hybrid Automata (Modelica 3.2-, 2006)
	Hybrid Automata with Modelica 3.3+ (prototype)
	Acausal Models in States – Modelica 3.3+
	Multiple Acasual Connections
	Conclusions

