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Introduction 
• Why synchronous features in Modelica 3.3? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

model Asynchronous_Modelica32 
  Real x(start=0,fixed=true),  
    y(start=0,fixed=true), z; 
equation  
  when sample(0,0.33) then 
    x = pre(x)+1; 
  end when; 
  when sample(0,1/3) then 
    y = pre(y)+1; 
  end when; 
  z = x-y; 
end Asynchronous_Modelica32; 
 
 

model Asynchronous_Modelica33 
  Real x(start=0,fixed=true),  
    y(start=0,fixed=true), z; 
equation  
  when Clock(0.33) then 
    x = previous(x)+1; 
  end when; 
  when Clock(1,3) then 
    y = previous(y)+1; 
  end when; 
  z = x-y; 
end Asynchronous_Modelica33; 
 
 
 

x and y must have  
the same clock 

Rational number 1/3 

z = x-y 

•   Error Diagnostics for safer systems! 
 

Implicit hold 
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Introduction 

• Scope of Modelica extended  
• Covers complete system descriptions including controllers 

 
• Clocked semantics 
• Clock associated with variable type and inferred 
• For increased correctness  
• Based on ideas from Lucid Synchrone and other synchronous languages 
• Extended with multi-rate periodic clocks, varying interval clocks and Boolean 

clocks 
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Synchronous Features of Modelica 
 

• Plant and Controller Partitioning 
• Boundaries between continuous-time and discrete-time equations  

defined by operators. 
• sample(): samples a continuous-time variable and returns a clocked 

discrete-time expression 
• hold(): converts from clocked discrete-time to continuous-time by holding the 

value between clock ticks 
• sample operator may take a Clock argument to define when sampling should 

occur 



    Slide 6 

partial model MassWithSpringDamper 
  parameter Modelica.SIunits.Mass m=1; 
  parameter Modelica.SIunits.TranslationalSpringConstant k=1; 
  parameter Modelica.SIunits.TranslationalDampingConstant d=0.1; 
  Modelica.SIunits.Position x(start=1,fixed=true) "Position"; 
  Modelica.SIunits.Velocity v(start=0,fixed=true) "Velocity"; 
  Modelica.SIunits.Force f "Force"; 
equation  
  der(x) = v; 
  m*der(v) = f - k*x - d*v; 
end MassWithSpringDamper; 
 

Mass with Spring Damper 

• Consider a continuous-time model 
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model SpeedControl 
  extends MassWithSpringDamper; 
  parameter Real K = 20 "Gain of speed P controller"; 
  parameter Modelica.SIunits.Velocity vref = 100 "Speed ref."; 
  discrete Real vd; 
  discrete Real u(start=0); 
equation  
  // speed sensor 
  vd = sample(v, Clock(0.01)); 
 
  // P controller for speed 
  u = K*(vref-vd); 
 
  // force actuator 
  f = hold(u); 
end SpeedControl; 

Synchronous Controller 

• Discrete-time controller 

Sample continuous velocity v  
with periodic Clock with period=0.01 

Hold discrete variable u 
between clock ticks 

The clock of the equation 
is inferred to be the same as for the variable 

vd which is the result of sample() 
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Discrete-time State Variables 

• Operator previous() is used to access the value at the previous clock tick 
 (cf pre() in Modelica 3.2) 
• Introduces discrete state variable 
• Initial value needed 

 
• interval() is used to inquire the actual interval of a clock 
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Base-clocks and Sub-clocks 

• A Modelica model will typically have several controllers for different parts of 
the plant.  

• Such controllers might not need synchronization and can have different base 
clocks.  

• Equations belonging to different base clocks can be implemented by 
asynchronous tasks of the used operating system.  

• It is also possible to introduce sub-clocks that tick a certain factor slower 
than the base clock.  

• Such sub-clocks are perfectly synchronized with the base clock, i.e. the 
definitions and uses of a variable are sorted in such a way that when sub-
clocks are activated at the same clock tick, then the definition is evaluated 
before all the uses. 

• New base type, Clock: 
  Clock cControl = Clock(0.01); 
  Clock cOuter = subSample(cControl, 5); 
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Sub and super sampling and phase 
model SynchronousOperators 
  Real u; 
 
  Real sub; 
  Real super; 
 
  Real shift(start=0.5); 
  Real back; 
equation  
  u = sample(time, Clock(0.1)); 
 
  sub = subSample(u, 4); 
  super = superSample(sub, 2); 
 
  shift = shiftSample(u, 2, 3); 
  back = backSample(shift, 1, 3); 
end SynchronousOperators; 
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Exact Periodic Clocks 

• Clocks defined by Real number period are not synchronized: 

  Clock c1 = Clock(0.1); 
  Clock c2 = superSample(c1,3); 
  Clock c3 = Clock(0.1/3);  // Not synchronized with c2 

• Clocks defined by rational number period are synchronized: 

  Clock c1 = Clock(1,10);             // period = 1/10 
  Clock c2 = superSample(c1,3);  // period = 1/30 
  Clock c3 = Clock(1,30);             // period = 1/30 
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Modelica_Synchronous library 

• Synchronous language elements of Modelica 3.3 
are “low level”: 
 
 
 
 
 
 

• Modelica_Synchronous library developed to access language elements in a 
convenient way graphically: 

  // speed sensor 
  vd = sample(v, Clock(0.01)); 
 
  // P controller for speed 
  u = K*(vref-vd); 
 
  // force actuator 
  f = hold(u); 
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Blocks that generate clock signals 

Generates a periodic clock with a Real period 
  parameter Modelica.SIunits.Time period; 
  ClockOutput y; 
equation  
  y = Clock(period); 

Generates a periodic clock as an integer multiple 
of a resolution (defined by an enumeration). 

Code for 20 ms period: 
y = superSample(Clock(20), 1000); 

Clock with period 20 s super-sample clock with 1000 

Generates an event clock: The clock ticks whenever the 
continuous-time Boolean input changes from false to true. 

y = Clock(u); 

period = 20 / 1000 = 20 ms 
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Sample and Hold 

Holds a clocked signal and generates a continuous-time 
signal. Before the first clock tick, the continuous-time output 
y is set to parameter y_start 

Discrete-time PI controller 

Purely algebraic block from 
Modelica.Blocks.Math Samples a continuous-time signal 

and generates a clocked signal. 

y = sample(u, clock); y = sample(u); 

y = hold(u); 
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Sub- and Super-Sampling 

Defines that the output signal is an integer 
factor faster as the input signal, using a “hold” 
semantics for the signal. By default, this factor 
is inferred. It can also be defined explicitly. 

y = superSample(u); 
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Defines that the output signal is an integer 
factor slower as the input signal, picking 
every n-th value of the input. 

y = subSample(u,factor); 



    Slide 17 

Varying Interval Clocks 

• The first argument of Clock(ticks, resolution) may be time dependent 
• Resolution must not be time dependent 
• Allowing varying interval clocks 
• Can be sub and super sampled and phased 

model VaryingClock 
  Integer nextInterval(start=1); 
  Clock c = Clock(nextInterval, 100); 
  Real  v(start=0.2); 
equation  
  when c then 
    nextInterval = previous(nextInterval) + 1; 
    v = previous(v) + 1; 
  end when; 
end VaryingClock; 
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Boolean Clocks 

• Possible to define clocks that tick when a Boolean expression changes from 
false to true.  

• Assume that a clock shall tick whenever the shaft of a drive train passes 
180o.  
 

model BooleanClock 
  Modelica.SIunits.Angle angle(start=0,fixed=true); 
  Modelica.SIunits.AngularVelocity w(start=0,fixed=true); 
  Modelica.SIunits.Torque tau=10; 
  parameter Modelica.SIunits.Inertia J=1; 
  Modelica.SIunits.Angle offset; 
equation  
  w = der(angle); 
  J*der(w) = tau; 
  when Clock(angle >= hold(offset)+Modelica.Constants.pi) then 
    offset = sample(angle); 
  end when; 
end BooleanClock; 
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Discretized Continuous Time 

• Possible to convert continuous-time partitions to discrete-time 
• A powerful feature since in many cases it is no longer necessary to manually 

implement discrete-time components  
• Build-up a inverse plant model or controller with continuous-time 

components and then sample the input signals and hold the output signals. 
• And associate a solverMethod with the Clock. 

 

model Discretized 
  Real x1(start=0,fixed=true); 
  Real x2(start=0,fixed=true); 
equation  
  der(x1) = -x1 + 1; 
 
  der(x2) = -x2 + sample(1, Clock(Clock(0.5), solverMethod="ExplicitEuler")); 
end Discretized; 
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State Machines 

• Modelica extended to allow modeling of control systems 
 

• Any block without continuous-time equations or algorithms can be a state of 
a state machine. 

• Transitions between such blocks are represented by a new kind of 
connections associated with transition conditions. 

• The complete semantics is described using only 13 Modelica equations. 
• A cluster of block instances at the same hierarchical level which are coupled 

by transition equations constitutes a state machine.  
• All parts of a state machine must have the same clock.  (We will work on 

removing this restriction ,allowing mixing clocks and allowing continuous 
equations, in future Modelica versions.) 

• One and only one instance in each state machine must be marked as initial 
by appearing in an initialState equation. 
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A Simple State Machine 

outer output i  outer output i  

inner i  
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A Simple State Machine – Modelica Text Representation 

model StateMachine1 
  inner Integer i(start=0); 
  block State1 
    outer output Integer i; 
  equation  
    i = previous(i) + 2; 
  end State1; 
  State1 state1; 
 
  block State2 
    outer output Integer i; 
  equation  
    i = previous(i) - 1; 
  end State2; 
  State2 state2; 
 
equation  
  initialState(state1); 
  transition(state1, state2, i > 10, immediate=false); 
  transition(state2, state1, i < 1, immediate=false); 
end StateMachine1; 
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Merging Variable Definitions 

• An outer output declaration means that the equations have access to the 
corresponding variable declared inner. 

• Needed to maintain the single assignment rule. 
• Multiple definitions of such outer variables in different mutually exclusive 

states of one state machine need to be merged.  
• In each state, the outer output variables (vj) are solved for (exprj) and, for 

each such variable, a single definition is automatically formed: 
• v := if activeState(state1) then expr1  

       elseif activeState(state2) then expr2  
       elseif … else last(v) 

  
• last() is a special internal semantic operator returning its input. It is just used 

to mark for the sorting that the incidence of its argument should be ignored. 
• A start value must be given to the variable if not assigned in the initial state. 
• Such a newly created assignment equation might be merged on higher 

levels in nested state machines. 
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Defining a State machine 

transition(from, to, condition, immediate, reset, synchronize, priority) 
• This operator defines a transition from instance “from” to instance “to”. The “from” and 

“to” instances become states of a state machine.  
• The transition fires when condition = true if immediate = true (this is called an 

“immediate transition”) or previous(condition) when immediate = false (this is called a 
“delayed transition”).  

• If reset = true, the states of the target state are reinitialized, i.e. state machines are 
restarted in initial state and state variables are reset to their start values.  

• If synchronize = true, the transition is disabled until all state machines within the from-
state have reached the final states, i.e. states without outgoing transitions.  
 

• “from” and “to” are block instances and “condition” is a Boolean expression.  
• “immediate”, “reset”, and “synchronize” (optional) are of type Boolean, have parametric variability and a default of true, true, 

false respectively.  
• “priority” (optional) is of type Integer, has parametric variability and a default of 1 (highest priority). Defines the priority of firing 

when several transitions could fire. 

 
initialState(state) 
• The argument “state” is the block instance that is defined to be the initial state of a 

state machine.  
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Conditional Data Flows 

• Alternative to using outer output variables is to use conditional data flows. 

add2

sub1

previ > 10

i < 1

i

block Increment 
  extends Modelica.Blocks.Interfaces.PartialIntegerSISO; 
  parameter Integer increment; 
equation  
  y = u + increment; 
end Increment; 

block Prev 
  extends Modelica.Blocks.Interfaces.PartialIntegerSISO; 
equation  
  y = previous(u); 
end Prev;  

protected connector (node) i  
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Merge of Conditional Data Flows 

• It is possible to connect several outputs to inputs if all the outputs come from 
states of the same state machine.   

 u1 = u2 = … = y1 = y2 = … 
 with ui inputs and yi outputs.  
• Let variable v represent the signal flow and rewrite the equation above as a 

set of equations for ui and a set of assignment equations for v:  
• v := if activeState(state1) then y1 else last(v); 

v := if activeState(state2) then y2 else last(v); 
… 
u1 = v 
u2 = v 
… 

• The merge of the definitions of v is then made as described previously: 
 v = if activeState(state1) then y1  
         elseif activeState(state2) then y2  

        elseif … else last(v) 
… 
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Hierarchical  
State Machine Example 
 • stateA declares v as ‘outer output’. 

• state1 is on an intermediate level 
and declares v as ‘inner outer 
output’, i.e. matches lower level 
outer v by being inner and also 
matches higher level inner v by 
being outer.  

• The top level declares v as inner 
and gives the start value. 
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Reset and Synchronize 
 

• count is defined with a start 
value in state1. It is reset when a 
reset transition (v>=20) is made 
to state1. 

• stateY declares a local counter j. 
It is reset at start and as a 
consequence of the reset 
transition (v>=20) from state2 to 
state1.  

• The reset of j is deferred until 
stateY is entered by transition 
(stateX.i>20) although this 
transition is not a reset transition. 

• Synchronizing the exit from the 
two parallel state machines of 
state1 is done by using a 
synchronized transition. 
 



    Slide 29 

Hybrid Automata (Modelica 3.2-, 2006) 

model Hybrid1  
  Real x(start=1); 
  Integer mode(start=1); 
  Boolean a=time>2.5; 
equation  
  if mode == 1 then 
    der(x) = 1; 
  elseif mode==2 then 
    der(x) = -x; 
  else 
    der(x) = 1+sin(time+0.5); 
  end if; 
   
algorithm  
  when x>2 and mode==1 then 
    mode :=2; 
    reinit(x, 2*x); 
  elsewhen edge(a) and mode==1 then 
    mode :=3; 
  elsewhen x<=2 and mode==2 then 
    mode :=3; 
    reinit(x, 1.5*x); 
  elsewhen x>=3 and mode==3 then 
    mode :=1; 
    reinit(x, 1); 
  end when; 
end Hybrid1; 

1x = x u=

x x= −

[ 3] / : 1x x≥ =

[ 2] / : 1.5*x x x≤ =[ 2] / : 2*x x x> =

a
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Hybrid Automata with Modelica 3.3+ (prototype) 

inner Real xstart(start=1, fixed=true);
inner Real x(start=xstart, fixed=true);
Boolean t3=time > 2.5;
Boolean a=edge(t3);

mode1
outer output Real x;
outer output Real xstart;
der(x) = 1;
xstart = 1;

mode2
outer output Real x;
outer output Real xstart;
der(x) = -x;
xstart = 2*x;

mode3
outer output Real x;
outer output Real xstart;
der(x) = 1 + sin(time + 0.5);
xstart = 1.5*x;

a

x >= 3

2: x > 2

x <= 2

1x = x u=

x x= −

[ 3] / : 1x x≥ =

[ 2] / : 1.5*x x x≤ =[ 2] / : 2*x x x> =

a
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Acausal Models in States – Modelica 3.3+ 

•The equations of each state is 
guarded by the activity condition 
•Should time variable be stopped 
when not active? 
•Should time be reset locally in 
state by a reset transition? 
•Special Boolean operator 
exception() to detect a problem in 
one model and transition to 
another model 
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Multiple Acasual Connections 
• //  C_p_i+brokenDiode_n_i+diode_n_i+load_p_i = 0.0; 

• Replaced by: 

• C_p_i +  
(if activeState(brokenDiode) then brokenDiode_n_i else 0) +  
(if activeState(diode)             then diode_n_i             else 0) +  
load_p_i = 0.0; 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

 [V
]

load_v
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Conclusions 

• We have introduced synchronous features in Modelica 3.3.  
• For a discrete-time variable, its clock is associated with the variable type and 

inferencing is supported. 
• Special operators have to be used to convert between clocks.  
• This gives an additional safety since correct synchronization is guaranteed 

by the compiler.  
 

• We have described how state machines can be modeled in Modelica 3.3. 
• Instances of blocks connected by transitions with one such block marked as 

an initial state constitute a state machine.  
• Hierarchical state machines can be defined with reset or resume semantics, 

when re-entering a previously executed state.  
• Parallel sub-state machines can be synchronized when they reached their 

final states.  
• Special merge semantics have been defined for multiple outer output 

definitions in mutually exclusive states as well as conditional data flows. 
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