System Design: From Requirements to Implementation

<u>A.Ferrari</u> O.Ferrante, L.Mangeruca

Advanced Laboratory on Embedded Systems S.r.l. A Research and Innovation Company

- Motivations
- Design using successive refinement
 - —Design flow description
 - -From requirements to sub-systems
 - -From sub-systems to functional decomposition
 - —From functional decomposition to physical implementation
- Overview of existing design languages
 Conclusions

Source: New York Times (http://www.nytimes.com/2006/12/11/business/worldbusiness/11iht-airbus.3860198.html?pagewanted=2&_r=2)

Long time-to-market

Complex

Motivations

Design using successive refinement

- -Design flow description
- -From requirements to sub-systems
- -From sub-systems to functional decomposition
- -From functional decomposition to physical implementation
- Overview of existing design languages
 Conclusions

Design using successive refinement

From System Requirements to Sub-system Requirements

Automated Towing System (ATS)

*Command Control Communications Computers, and Intelligence

ALES S.r.l.

Requirements decomposition

Sub-systems interfaces identification

Responsibility identification (concurrent development)

ALES Experience – Requirements formalization using the Constant Print Editor tool

- ✓ Graphical editor for system specification
 - Graph basic semantics
 - Native concepts: component, port, connection, parameter, variable
 - Eclipse & EMF underlying technologies
 - Unique formalized model for capturing design
- ✓ Multiple DSLs support
 - E.g., system structure, distributed simulation structure, etc...
- ✓ Visual representation of state
 - Textual (displays/scopes) or change of image/shape/color of components/lines
- ✓ Dedicated parameterization view
- Contracts specification
 - Pattern based specification
 - Textual language
- Plug-in based framework
 - New functionality can be built using the eclipse mechanism

From Requirements to Functional Architecture

Cruise control contracts

✓ Contract specification

- Assumption is the conjunction of three assertions

- The slope value (slope percentage) is in {-8, -4, 0, 4, 8}
- The wind gust value is in {-15, 0, 15} m/s
- The wind gust, every 40 ms, can change of a maximum absolute value of 15 m/s

-Promise:

• the actual speed value is $\pm 5.5\%$ of the reference speed value

From requirements to functional architecture – Example

ALES Experience – Requirement & Functional architecture description & formal verification

אואדא 🥞

From functional architecture to physical implementation

Motivations

- Design using successive refinement
 - -Design flow description
 - -From requirements to sub-systems
 - —From sub-systems to functional decomposition
 - -From functional decomposition to physical implementation
- Overview of existing design languages
 Conclusions

Where Languages Map?

10/15/2012

ALES S.r.l.

Design using successive refinement – the ideal language

Language X

Graphical and textual representation

Support for the compositional description of different model of computations

Used in academy and industry

- Support for operational description of requirements
- Support for constraint-based description of requirements
 - Well defined semantics
 - Composable integration of heterogeneous MoCCs
 - Support for non-deterministic specification
 - Capability of capturing safety/timing constraints

 Formal and compositional description of structure and behaviors of functional and architectural network

Support for efficient and formal description of mapping between
 function and architectural elements

• Automatic synthesis of controller code staring from functional specification & architectural constraints

Sub-Systems Requirements

System Requirements

Functional Decomposition

Architecture definition & mapping

✓ Summary

Design flow using successive refinement

- From requirements to sub-system
- From sub-system to functional architecture
- From functional architecture to physical implementation
- Equation-based language
 - Overview
 - Limitations