The OpenModelica Environment including Static and
Dynamic Debugging of Modelica Models and
Systems Engineering / Design Verification

Linkopings universitet

September 19-21, 2012

Peter Fritzson

Professor at Linkdping University, Sweden

Vice Chairman of Modelica Association

Director of Open Source Modelica Consortium

peter.fritzson@liu.se

Main Contributors, these topics:

Wladimir Schamai, Martin Sj6lund, Adrian

YL

MODEL

Pop, Adeel Asghar
& rest of OpenModelica team

'CA

Overview

e Background

 Debugging models

« Dynamic verification of requirements

YL

MoDELI'CA

Vision of Integrated Model-Based Development

e e e e e e e e Feedback
| | |
\Z v \Z
Business Requirement Modelpriven Compilation
Process Capt Design & Code Gen
pture
Control (PIM) (PSM)

System
Simulation

| | |
Process Requirement Product Platform
models models models models

Software &
Syst Produc

Vision of unified modeling framework for model-driven

product development from platform independent models (PIM)
to platform specific models (PSM)

YL

MoDEL’cA

Formal Specification of Modelica Static Semantics

* First Structured Operational Semantics (SOS)

Modelica subset formal specification

* First version1998, main parts of Modelica static semantics
* Primarily Big step semantics / Natural Semantics
» Generating first version of the OpenModelica compiler

« Generating efficient compiler using RML tool

e 2005 converting rule-based syntax into
MetaModelica syntax

e 2011 full integration with standard Modelica

» Bootstrapping of the OpenModelica compiler

YL

MoDELI'CA

Main Language Extensions

e MetaModelica 2005

 Recursive data structures, lists
e Pattern matching
« Failure/exception handling, backtracking

e ParModelica 2011

« Dataparallel language constructs, multi-core, e.g. mapping to OpenCL
« Memory hierarchy for data allocation

e Optimization extension 2012

» Follow same syntax as Optimica in Jmodelica.org

e ModelicaML extension from 2007

* Integrate UML/SysML graphical language and requirement handling
« Separate tool, not yet integrated in Modelica and the OpenModelica compiler

YL

MoDELI'CA

OpenModelica — An Open Source Environment
Open Source Modelica Consortium, 43 org members Aug 2012

Founded Dec 4, 2007

Open-source community services
 Website and Support Forum
 Version-controlled source base
« Bug database

DEVELOPER FORUM DOWNLOAD S search.

Top information i
op informatiol Introduction Latest news
° D I t Hew Openilodelica , : Feb 5: Opentlodelica Release 1.5.0
ite i - 5 i i 5 4 i 5
eV e o p m e n C O u rs es Ml s OPENMODELICA IS AN OPEN-SOURCE Modelica-based modeling and simulation P
1 The new OpenModelica environment intended for industrial and academic usage. Its long-term development RC2
. = website is up and is supported by a non-profit organization —the Open Source Modelica Consortium Jan 28 OMScheme release available for
« www.openmodelica.org
The goal with the OpenModelica effortis to create a complete Open Source Modelica Dec 14: Openilodelica Release 1.5.0
. . . Registration modeling, compilation and simulation environment based on free software distributed RC1
I Nn te rac t lve M (0] d el ICacom p | I er (O M C) in binary and source code form. \We invite researchers and students, or any interested T —
F‘Iease register if 'y"UU download and developerto participats o OMEdit - OpenModelica Connection Editar o=
install Open Modelica. Why? We would File Edit View Simulstion FMI Tools Help

° Complles the Modelica Language like to inform you about new - IR 0poEO \\.-.H NS Dy -

of Open Modelica! We want be
Components B X | ForceAndTorque B |

Modelica Standard Library = ‘@é \]umMFMd'MM ‘ ‘
1

1= 7 Modelica

* Modelica and Python scripting ipiintinle i il

distributed to third parties!

. . s 7 sl | & (= Blocks =]
Environment for creating models — e (Rl o
. . registered 3s we check the information Tt ® (7 Fluid | chemnmmule
« OMShell — scripting commands st oo = G [le@e 4 [o

(3 Math

e OMNotebook —interactive Noteb00oK | oot ou sstonce @ 53 Mechrice fedt

[Media
¥ I
Register yourselfto gef| | 0 sturits 1|

1 1 Participate in the Openj
« MDT —Eclipse plug-in ; B s ooy | SEAE, M
Help us: getthe latest{| | = (J Thermal
© @ UsersGuide

« OMEdit graphic Editor i (1

{00001 0}=1

{0001 ‘001 -} =4

¥ I 4 ={1.5,0.25.0)
Modelica Library | Modelica Files |

Model Browser 8 x ; Kind Time Resource Location Message

« OMOptim optimization tool C—
e ModelicaML UML Profile

Messages
cfgore L

6 s

MoDEL’cA

Debugging Equation-Based Languages
and Background

Problems

e Large Gap in Abstraction Level
from Equations to Executable Code

Example error message (hard to undestand)
Error solving nonlinear system 132

time = 0.002

residual[0] = 0.288956

X[0] = 1.105149

residual[1] = 17.000400

X[1] = 1.248448

YL

MoDELI'CA

Static vs Dynamic Debugging

e Static Debugging
* Analyze the model/program at compile-time
» Explain inconsistencies and errors, trace error dependencies
 Example: Underconstrained/overconstrained systems of equations
« Example: errors in symbolic transformations of models

 Dynamic Debugging
* Find sources of errors at run-time, for a particular execution

 Declarative dynamic debugging — compare the execution with a
specfication and semi- automatically find the location of the error

 Traditional dynamic debugging — interactively step through the
program, set breakpoints, display and modify data structures, trace,
stack inspection

e Goal: Integrated Static and Dynamic Debugging

YL

MoDELI'CA

Previous PhD Theses on Dynamic/Static Debugging
In Our Group

e Dynamic. Nahid Shahmeri(1991). Generalized Algorithmic
Debugging

e Dynamic. Mariam Kamkar(1993). Interprocedural Dynamic
Slicing with Applications to Debugging and Testing

e Dynamic. Henrik Nilsson(1998). Declarative Debugging for
Lazy Functional Languages

o Static/Dynamic. Peter Bunus (June 2004). Debugging
Techniques for Equation-Based Languages.

e Dynamic. Adrian Pop (June 5, 2008). Integrated Model-
Driven Development Environments for Equation-Based
Object-Oriented Languages

YL

10 Moo ELl’cA

Dynamic Debugging

Large Modelica Algorithmic Code
Models

11

Tool Architecture and Communication

Modelica Model

OpenModelica
Compiler

Modelica source code
positions are mapped
to C source code

positions
Gnu Compiler

Executable

DebuggerGraphical GDB-MI
User Interface

12 Vg

‘e
MODELICA

Example Mapping Modelica Postions to C Code

Convert Modelica code to C source code by
adding Modelica line number references.

@ bl a2

7#line 29 "1elloWorld e
/* functionBodyRegularFunction: wvar inits */
#line 30 "HelloWorld.c"
/* functionBodyRegularFunction: body */
1#line 5 "/c/workspace/HelloWorld/HelloWorld.mo"
tmp2 = sin(_x);
3#line 5 "/c/workspace/HelloWorld/HelloWorld.mo"”
_y = tmp2;
65 #line 35 "HelloWorld.c"

(l

@ hlellolicn kher a2

 1- function HelloWorld
input Real Xx;
output Real y;

algorithm
Yy := 8in(x);

end HelloWorld;

W

O W

7\)]

N b W N -
;M "
Y T S

(8)

»)

VL

13 MODELICA

Debugger Integrated in Eclipse OpenModelica
MDT Environment

* Eclipse plugin
MDT (Modelica
Development
Tooling) is the
Integrated
development
environment

 Debuggeris a
debug plug-in
within MDT

& Debug - trunk/Compiler/Script/l ive.mo - Eclipse SDK - - ecn|sE)
File Edit Navigate Search Project Run Window Help
@i [@ (F~0~- Q- ™+~ v ol w % {2 v o~ . ComectIndentation | Build project | %5 Debug | E Mod¢ ™
35 Debug 2 _ = B | 69= Variables £3 o Breakpoints| = MDT Data Stack| B &R %70
¢ & >] ‘ DD .RT | i Name Declared Type Value Actual Type
—'ﬁ-’. MDT GDB [Modelica Developement Tooling (MDT) GDB] @ b2 Boolean false signed char
i® MDT @ count Integer 13 long int
l’s Main Thread (stepping) 4 @ inStatements record<Interactive.Statements.IS... record<Interactive.State... void * =1
) pping =
= evaluateGraphicalApi at Interactive.mo:2034 4 & interactiveStmtLst list<record<Interactive.Statemen... <1 item> void *
= evaluate? at Interactive.mo:485 4 9 1) record<Interactive.Statement.JEX... record<Interactive.State... void ™
= evaluateToStdOut at Interactive.mo:328 4 @ op record<Absyn.Exp.CALL> record<Absyn.Exp.CALL> void * i
= translateFile at Main.mo:619 4 @ function_ record<Absyn.ComponentRef.C... record<Absyn.Compon... void*
= becall at Debug.mo:460 | @ name String "loadModel” void *
= main at Main.mo:1183 @ subscri list<Any> <0 item> void *
p| C:\OpenModelica\trunk\testsuite\bootstrapping\main.exe @ functionAr record<Absyn.FunctionArgs.FUN... record<Absyn.Function... void*
@ semicolon Integer 1 void *
B L LIS S P wmmmerd s Tnbmenmbivim CosmmbamlTalkle cmmas ol Tonbmum s om Covumn i ® i
List of Stack Frames e -
« »
(M Main.mo Interactive.mo .'fi = B[82 outline 3 Bag*w¥XY=0O

Variables View

then
(resstrxr,st);

case (istmts, st as SYMBOLTABLE (ast = p))
equation
£2) matchApiFunction(istmts, "getIconAnnotation™);
{Absyn.CREF (componentRef = cr)} = ge:npiFunccionAzgs(1snmxsm:
modelpath = Absyn.crefToPath(cr):
ErrorExt.setCheckpoint ("getIconAnnotation”);
RTIOpts.setEvaluateParametersInfAnnotations (true);
resstr = getIconAnnotation (modelpath, p):
RTOpts.setEvaluateParametersInfAnnotations (false);
ErrorExt.rollBack("getIconAnnotation®); b

<4 i »

(& Console 23 J_: Tasks [L Problems| {2 Executables 4 Search
MDT GDB [Modelica Developement Tooling (MDT) GDB; C:\OpenModelica\trunk\ ite\b

trapping\main.exe

evaluateForStmt(String iter, list<Values.Val _

Output View

dumpCompiledFunctions(SymbolTable inf »
dumpComponentsToString(Components i
eltsHasLocalClass(list< Absyn.Elementitem
emptyComponentReplacementRules(Com
emptyComponents(Components inCompc

evaluate(Statements inStatements, Symbol
evaluate2(Statements inStatements, Symbc
evaluateAlgStmt(Absyn.Algorithmltem inA
evaluateAlgStmtLst(list< Absyn.Algorithmit
evaluateExpr(Absyn.Exp inExp, SymbolTabl
evaluateExprToStr(Absyn.Exp inExp, Symbo

14

YL

MoDEL’cA

Static Debugging

Transformational Debugging of
Equation-Based Models

15

Debugging Equation Systems

Modelica Compiler Backend

. Complex mathematical transformations
. Hidden to users

. Users want to access this information

. Not intuitive, because

No explicit control flow
Numerical solvers
Linear/Non-linear blocks
Optimization

Events

16

YL

MoDELI'CA

Translation Phases with Model

Include
debugging
support
within the
translation
pProcess

Debugging Translation
Process Additional Steps

Save element position

Save element origin
(model and position)

Save equation elements origin
(model and position)

Save the optimizer
transformations changes

Save all the available
origin information

Executable with all the
available origin information

Simulation with run-time
debugging functionality

Normal Translation Pro

Modelica
Source Code

Translator

Analyzer

Optimizer

@ e
J [t
@4---— ---------

Debugging

cess

Modelica model

-1 .
equations

Code
Generator

@4---— ---------

C Compiler

=

Simulation

17

Input to Debugger: Modelica Model

class RC /I 24 equations and variables
equation

groundl.p.v = 0.0;

0.0 =resistorl.p.i + resistorl.n.i

resistorl.i = resistorl.p.i;

resistorl. T_heatPort = resistorl.T;
capacitorl.i = capacitorl.C * der(capacitorl.v);
capacitorl.v = capacitorl.p.v - capacitorl.n.v;
0.0 = capacitorl.p.i + capacitorl.n.i;
capacitorl.i = capacitorl.p.i;

end RC;

18

MOD

YL

L]
ELICA

Output from Compiler Frontend:
Sorted ODE or DAE (Differential Algebraic Equations)

class RC // 24 equations and variables

equation

groundl.p.v = 0.0;

0.0 = resistorl.p.i + resistorl.n.i;

resistorl.i = resistorl.p.i;

resistorl. T _heatPort = resistorl.T;

capacitorl.i = capacitorl.C *
der(capacitorl.v);

capacitorl.v = capacitorl.p.v —
capacitorl.n.v;

0.0 = capacitorl.p.i + capacitorl.n.i;

capacitorl.i = capacitorl.p.i;

end RC;

class RC // 5 equations and variables

Il 14 alias variables 5 constants
equation

sinevoltagel.signalSource.y =
sinevoltagel.signalSource.offset + (if time <
sinevoltagel.signalSource.startTime then 0.0
else sinevoltagel.signalSource.amplitude *
sin(6.28318530717959 *
(sinevoltagel.signalSource.freqHz * (time -
sinevoltagel.signalSource.startTime)) +
sinevoltagel.signalSource.phase));

resistorl.v = capacitorl.v -
sinevoltagel.signalSource.y;

capacitorl.i = -resistorl.v / resistorl.R_actual;

resistorl.LossPower = -resistorl.v *
capacitorl.i;

der(capacitorl.v) = capacitorl.i / capacitorl.C;
end RC;

19

YL

MoDELI'CA

Symbolic Transformations

= From source code to flat equations
= Most of the structure remains
= Few symbolic manipulations (mostly
simplification/evaluation)
= Equation System Optimization
= Changes structure
= Strong connected components
= Variable replacements
= ... and more

20

YL

MoDELI'CA

Tracing Symbolic Transformations

= Simple ldea
= Store transformations as equation metadata

= Works best for operations on single equations
= Alias Elimination (a = b)
= Equation solving (f,(a,b) = f,(a,b), solve for a)

= Multiple equations require special handling

= Gaussian Elimination (linear systems, several
equations)

21

YL

MoDELI'CA

Tracing Overhead?

= OpenModelica compiler implementation is so fast that
tracing is enabled by default

= 1 extra comparison and/or cons operation per
optimization

= Not noticeable during normal compilation

= Less than 1% time overhead for tracing

= No real overhead unless you output the trace

22

YL

MoDELI'CA

Substitution Example, Storing the Trace

=b = The alias relation a=b
c=a+b stored in variable a
d=a-b

= The equations are e.g.

c =a+b (substa=b) => stored as

c =b + b (simplify) => (Ihs,rhs,list<ops>)
c=2%*Db

d =a-b (subst a=b) =>
d =b - b (simplify) =>
d=0.0

23

YL

MoDELI'CA

Debugging Using the Transformation Trace

= [ext output
= Initial implementation
= Verify performance and correctness of the trace

= Structured output based on database storage

= Graphical debugging
Cross-referencing equations (dependents/parents)

Ablility to see why a variable is solved in a particular
way

Requires a schema

Future work/work in progress

24

YL

MoDELI'CA

Trace Example (1)

0=y +der(x *time * z);

(1) substitution:
y + der(x * (time * z))
=>
y + der(x * (time * 1.0))
(2) simplify:
y + der(x * (time * 1.0))
=>
y + der(x * time)

z=1.0;

(3) expand derivative
(symbolic diff):
y + der(x * time)
=>
y + (X + der(x) * time)
(4) solve:
0.0 =y + (X + der(x) * time)
=>
der(x) = ((-y) - X) / time

25

YL

MoDELI'CA

Trace Example (2)

differentiation:
d/dtime L * 2.0
=>
0.0
differentiation:
d/dtime x* 2.0 +y " 2.0
=>

2.0 * (der(x) * x + der(y) * y)

Substitution:
2.0 * (der(x) * x + der(y) *y)
=>
2.0 * ($DER.x * x + $DER.Y *)
=>
2.0 * (u*x + $DER.y *)
=>
20*(U*X+V*y)
=>

2.0 * (u * xloc[1] + v * xloc[0])

26

YL

MoDELI'CA

Readability of Transformation Trace

= Most equations have MSL 3.1 MultiBody DoublePendulum

. # Ops Frequency Comment
very few transformations s oararmotare
on them 1 89 Dummy eq & know var
2 720 Alias vars
= Most of the interesting 3 479 Alias vars
eq Uations have a feW 4 124 Alias after simplify
. 5 25 Alias after simplify
= Still rather readable - - Alias after simplify
7 55 Scalar eq
= Some extra care to . =
handle Modelica variable o 110
aliasing 10 e
11 12
12 25
13 35
14 3 Known constant after many
replacements
21 27 World object (3x3 matrix
27 with many occurances of \

aliased vars)

Future Work on Transformational Debugging

= Structural debug information queries based on a
database

= Graphical debugger
= Simulation runtime uses database
= More operations recorded

= Dead code elimination
= Control flow and events
= Forgotten optimization modules

28

YL

MoDELI'CA

Integrated Debugging

29

Need to Combine Approaches to Help the User

Modelica Specific

Modelica

OpenModelica
Simulation
Runtime

Simulation

uolye|nwis % uonedwo)

Files

buioel] » bulbbngag

model Apollo
equation

Error

gravity = ..;

end Apollo;

?

Where is the actual
code that caused this
error?

How do we go back?
How can we automate
the round trip?

How do we fix it?

Where is the actual
code that caused
this error?

30

Integrated Debugging Approach

Error Discovered

What now?
Where is the equation or code that
generated this error?

5

Build graph

v

Interactive Dependency Graph
These equations contributed to the resulf

Code viewer

Show which model or function
the equation node belongs to

e Mark the error

« Build an interactive
graph from the
transformation trace

 Walk the graph
interactively to find the
error

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of
, Junctions

Follow if error
is in an equation

B ——

pN

Simulation Results
These are the infermediate simulation
resuits that contributed to the result

xxxxx

31

Debugging Based on User Interaction

* The Interactive dependency graph contains two types of
edges:

Calculation dependency edges
Origin edges from traced symbolic transformations

* The user interacts with the dependency graph in several
ways:

Displaying simulation results through selection of the variables
Classifying a variable as having wrong values
Classifying an equation as correct

Building a new dependency graph based on the new set of variables
with wrong values (classified variables) or by modifying the equations
or parameter values nodes.

Displaying model code by following origin edges
Invoking the algorithmic code debugging subsystem

32

7
MDé?LIEA

Debugging Summary

Debugging equation-based models present new
challenges

Equation systems are transformed symbolically to a
form hard for the user to recognize

Static transformational debugging explains the
transformations and maintains a mapping between the
low level and the high level model

Dynamic debugging helps to walk through a
model/program and inspect data for an execution

Goal: integrated static/dynamic debugging approach

33

YL

MoDELI'CA

Requirements traceability and
dynamic model verification

34

Introduction: ModelicaML Background

« ModelicaML Eclipse plug-in
Modelica/UML profile integrates
a subset of the UML and the

(1) system Modeling with ModelicaML

Modelica language in order to — =7| (@)Modeiica Code Generation

leverage standardized graphical e | ge = = = —

notations of UML for system Rt g |l [N il :

modeling and the simulation = | cH= <Es

power of Modelica & T — ’
 ModelicaML enables engineers to

describe
— System requirements N
|

- SyStem d e_S I g n (StrUCtu re @léystem Simulation Witr;l\/lédelica Tools
and behavior)

— Usage-, test scenarios

 VVDR (Virtual Verification of Designs against Requirements) is a method that
enables a model-based design verification against requirements
« VVDR s supported in ModelicaML

35 M 0 D’

L]
ELICA

Introduction: vVDR Method

Task

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Created Artifact

RMM II Requirement

Monitor Models

Designs
Alternative
Models
|| Scenario
Models

Models

%
Create Verification

Execute and
Create Report

Analyze Results

P Reports

Verification Models

Analyze Modify

” Verify

Goal: Enable on-demand
verification of designs
against requirements
using automated model
composition at any time
during development.

Focus of this
presentation

36

YL

MoDELI'CA

Challenge

* We want to verify different design alternatives against sets of requirements
using different scenarios. Issues:

1) How to find valid combinations of design alternatives, scenarios and
requirements in order to enable an automated composition of verification
models?

2) Having found a valid combination: How to bind all components correctly?

Designs Alternative Scenario Requirement

Models Models Models
RMM

ek
RMM wm

7

. . %
Create Verification
Models

1. Verification
Model

2. Verification
Model

n. Verification
Model

YL

37 MoDELI'CA

Solution Proposal: Value Bindings

 Value Binding enables the automation of

verification model composition O o
« Value Bindings include the definition of: @) Mediators
Q Providers

» Client (component that requires data from
other components)

* Provider (component that provides data reau Sei
equirement esign
for other components) Monitor Alternative
 Mediator (mediates between clients and Models Model
providers) _II o o
: : : RMM
* Depending on which mediators and ™~ .0
providers are in place we can: O‘@ ~
» Determine which clients can be satisfied o éb
* Find valid combinations and generate m“ Ve:\l/ll‘(ljcdaetllon
verification models
L : S ' Oth
« Generate bln_dlng _c_ode_: for client E,,eondaé;o Requierred
components in verification models Models
38 MopELlca

Example: Design Alternative Model

« Simplified Aircraft Potable Water System

plLiquidSupply

plLiquidFillDrain
1

supplyValve

E pTank
fillDrainvalve

pExtern pControl

pExtern
]

pControl [EH:]

L

waterClients

SimplePotableWaterSystem
| | controller
overFiowVaive pOverFlowControl
pControl [:l
pTank tank pSensor
pliquidOverfiow pSensor I::I—E]

pFillDrainControl

pSupplyControl
=

(]

pInputData

E pController
ontrollerGUI

- Overhead tank system
that can be filled using a
liquid source from bottom
with the aircraft on ground.

- Controller monitors the
level of liquid and controls
the valves according to its
mode (e.g. “fill”-, “drain” -,
“pre-selected value fill” -
mode).

] r-l
L L
pLiquidSink pliquidSource
Liquid out Liquid in (from liquid source)

39

YL

MoDELI'CA

Example: Requirement Monitor Model
"The time to fill an empty tank shall be 300 sec. max.”

Clients to get input values
from design model providers

1 - Tank filling time

00
& |input Boolean tanklsEmpty = false

& |input Boolean tanklsBeingFilled = false
& |input Boolean tanklsFull = false
parameter Real timeLimit = 300

T
P
P
P
P

b @ outputInteger status
» ([Violation Monitor T

“status” is set by the violation monitor and
indicates the following:

0 = not evaluated

1 = evaluated and not violated

2 =violated

YL

40 MoDELI"CA

Example: Scenario Model “Filling and draining the te

Providers for design model clients

<1-Fill and Drain Tank
b EA| parameter output Real ambPressure(..) = 101325

output Integer mode(..)

output Real pumpPowerFactor AF 0 | :
output Real preselectedLevel (ﬁng tank with 100% of pump power | preselectéd Level :=1:
output Integer overflowValveStuckAt = 0 4 pumpPowerFactor := 1;

QEECEEE K

output Integer fillDrainValveStuckAt = -1 m(m)J/
output Integer supplyVavleStuckAtPosition = 100 (e)< AFTER(400)
input Real tankHeight = 1 T50) \|/
Scneario: Filling and draining the tank —>
g 9 Pump is off)ﬂ(mmwmm%mmw)
\ J
Example scenario: Tank cleaning by filling
and draining the tank several times when the
aircraftis on ground.
41 MoDELI’CA

Example: Mapping Scenarios to Requirements

e Automatic generation/selection of which scenarios
are appropriate to verify which requirements

« One scenario can be used to verify multiple requirements (to increase
requirements coverage and confidence in verification results)

« Each requirement should be referenced by at least one scenario

«requirement» «requirement» «requirement» «requirement>»
! Filling time ! Fill mode behavior | Idle mode behavior I Tank draining time
N = A i 7
\\ N 1 p s
\ e \ ’
A b .
. . \ .) These relations
«usedToVerify» «usedToverffy» «usedToVerify> «ysedToverify» «usgdToVerify»
i y ' ; y are now
o T)) generated
«verificationScenario» «verificationScenario» «verificationScenario» i
] s2 - Fill tank -] 1 - Filling and Draining - 53 - Drain tank automatical Iy

42

MOD

YL

L]
ELICA

Simulation and Report Generation in ModelicaML

*VVerification models are

simulated.

The generated Verification
Report is a prepared summary

of:

Configuration, bindings
Violations of requirements
etc.

Plot by OpenModelica

0.8
0.6

0.4 w \/\k

0.2 N’

D

50 100 150 200 250 300 350
time

Verification models number (3), = 3

d (0), failed (3)

Failed VeM for: s1-Fill and Drain Tank (Plot)
Failed VeM for: s2-Fill tank (Plot)
Failed VeM for: s3-Drain tank (Plot)

Failed VeM for: s1-Fill and Drain Tank (Plot)
(MedelicaMLModel: :GenVeMs for: SPWS Environment_1::VeM for: s1-Fill and Drain Tank)

Settings: startTime = 0, stopTime = 1500, tolerance = default, intervals = 0, outputFormat = plt

verdict allRequirementsEvaluated : yes
verdict someRequirementsViolated : yes

Meodel to be verified: SPWS Environment
(ModelicaMLModel: :Design: :SPWS Environment)

Verification Scenario: s1-Fill and Drain Tank
(ModelicaMLModel: : Verification Scenarios::s1-Fill and Drain Tank)

madantory client: vs_s1 fill and drain tank.tankHeight (changed its value)

Type
Variability

Binding code :

ModelicaReal
continuous
sm_spws_environment.spws.tank.height

Violated Requirement: Drain mode behavior (ID 004)

{ModelicaMLModel: :Requirements::Drain mode behavior)
Text: When the system is drained only the fill/drain valve should be open, all other valves should be closed.

verdict evaluated : yes
verdict violated : yes

madantory client: req_ 004 drain_mode behavior.fillDrainValveIsOpen (changed its value)

Type
Variability

Binding code :

ModelicaBoclean
centinuous)
sm_spws_environment.spws.fillDrainValve.isFullyOpen

madantory client: req 004 drain_mode behavior.otherValvesAreClosed (changed its value)

Type
Variability
Binding
code

: = ModelicaBoolean

: = continuous

: = if sm_spws_environment.spws,overFlowValve.isFullyClosed and sm_spws_environment.spws.supplyVavle,isFullyClosed
then true else false

43

YL

MoDEL’cA

Conclusion

The ModelicaML Value Bindings approach enables automated model
composition, which is used in ModelicaML for automatic generate
verification models

Bindings do not modify client or provider models (important when
libraries are used)

Using binding definitions we can find valid combinations and
automatically generate verification models

The generated verification models become artifacts that are created
automatically on-demand and do not need to be maintained

44

YL

MoDELI'CA

Overall Summary

e (Goal of integrated model-based development

This talk covers two aspects

* Integrated static/dynamic debugging of models

Dynamic debugging of large algorithmic models fully functional

Static Equation debugging prototype need to be integrated and scaled up for large
models

 Requirements traceabllity and verification

« Automated dynamic verification and generation of verification models

Need to be integrated in Modelica standard

YL

45 MoDELI'CA

