
September 19-21, 2012

Peter Fritzson

Professor at Linköping University, Sweden
Vice Chairman of Modelica Association
Director of Open Source Modelica Consortium
peter.fritzson@liu.se

Main Contributors, these topics:

Wladimir Schamai, Martin Sjölund, Adrian
Pop, Adeel Asghar
& rest of OpenModelica team

The OpenModelica Environment including Static and
Dynamic Debugging of Modelica Models and

Systems Engineering / Design Verification

LCCC Workshop in Lund

2

Overview

• Background

• Debugging models

• Dynamic verification of requirements

3

Vision of Integrated Model-Based Development

Vision of unified modeling framework for model-driven
product development from platform independent models (PIM)
to platform specific models (PSM)

Product
models

Requirements
models

Unified Modeling: Meta-modeling&Modelica& UML &OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
&Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Metamodeling- &Modelica&UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
&Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

4

Formal Specification of Modelica Static Semantics

• First Structured Operational Semantics (SOS)
Modelica subset formal specification
• First version1998, main parts of Modelica static semantics
• Primarily Big step semantics / Natural Semantics
• Generating first version of the OpenModelica compiler

• Generating efficient compiler using RML tool
• 2005 converting rule-based syntax into

MetaModelica syntax
• 2011 full integration with standard Modelica

• Bootstrapping of the OpenModelica compiler

5

Main Language Extensions

• MetaModelica 2005
• Recursive data structures, lists
• Pattern matching
• Failure/exception handling, backtracking

• ParModelica 2011
• Dataparallel language constructs, multi-core, e.g. mapping to OpenCL
• Memory hierarchy for data allocation

• Optimization extension 2012
• Follow same syntax as Optimica in Jmodelica.org

• ModelicaML extension from 2007
• Integrate UML/SysML graphical language and requirement handling
• Separate tool, not yet integrated in Modelica and the OpenModelica compiler

6

Open-source community services
• Website and Support Forum
• Version-controlled source base
• Bug database
• Development courses
• www.openmodelica.org

OpenModelica – An Open Source Environment
Open Source Modelica Consortium, 43 org members Aug 2012

Founded Dec 4, 2007

Interactive Modelica compiler (OMC)
• Compiles the Modelica Language
• Modelica and Python scripting

Environment for creating models
• OMShell – scripting commands
• OMNotebook – interactive notebook
• MDT –Eclipse plug-in
• OMEdit graphic Editor
• OMOptim optimization tool
• ModelicaML UML Profile

7

Debugging Equation-Based Languages
and Background

8

Problems

• Large Gap in Abstraction Level
from Equations to Executable Code

• Example error message (hard to undestand)
Error solving nonlinear system 132

time = 0.002
residual[0] = 0.288956
x[0] = 1.105149
residual[1] = 17.000400
x[1] = 1.248448
...

9

Static vs Dynamic Debugging

• Static Debugging
• Analyze the model/program at compile-time
• Explain inconsistencies and errors, trace error dependencies
• Example: Underconstrained/overconstrained systems of equations
• Example: errors in symbolic transformations of models

• Dynamic Debugging
• Find sources of errors at run-time, for a particular execution
• Declarative dynamic debugging – compare the execution with a

specfication and semi- automatically find the location of the error
• Traditional dynamic debugging – interactively step through the

program, set breakpoints, display and modify data structures, trace,
stack inspection

• Goal: Integrated Static and Dynamic Debugging

10

Previous PhD Theses on Dynamic/Static Debugging
in Our Group

• Dynamic. Nahid Shahmeri(1991). Generalized Algorithmic
Debugging

• Dynamic. Mariam Kamkar(1993). Interprocedural Dynamic
Slicing with Applications to Debugging and Testing

• Dynamic. Henrik Nilsson(1998). Declarative Debugging for
Lazy Functional Languages

• Static/Dynamic. Peter Bunus (June 2004). Debugging
Techniques for Equation-Based Languages.

• Dynamic. Adrian Pop (June 5, 2008). Integrated Model-
Driven Development Environments for Equation-Based
Object-Oriented Languages

11

Dynamic Debugging

Large Modelica Algorithmic Code
Models

12

Tool Architecture and Communication

12

Modelica Model

C Code

OpenModelica
Compiler

Executable

DebuggerGraphical
User Interface

GDB-MI

Gnu Compiler

Modelica source code
positions are mapped

to C source code
positions

13

Example Mapping Modelica Postions to C Code

 Convert Modelica code to C source code by
adding Modelica line number references.

14

Debugger Integrated in Eclipse OpenModelica
MDT Environment
• Eclipse plugin

MDT (Modelica
Development
Tooling) is the
integrated
development
environment

• Debugger is a
debug plug-in
within MDT

15

Static Debugging

Transformational Debugging of
Equation-Based Models

16

Debugging Equation Systems

Modelica Compiler Backend
 Complex mathematical transformations
 Hidden to users
 Users want to access this information
 Not intuitive, because

 No explicit control flow
 Numerical solvers
 Linear/Non-linear blocks
 Optimization
 Events

17

Translation Phases with Model Debugging

Save element position

Normal Translation ProcessDebugging Translation
Process Additional Steps

Save element origin
(model and position)

Save equation elements origin
(model and position)

Executable

C Code

Optimized sorted
equations

Sorted equations

Flat Model

Modelica model

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Save the optimizer
transformations changes

Save all the available
origin information

Executable with all the
available origin information

Simulation with run-time
debugging functionality

• Include
debugging
support
within the
translation
process

18

Input to Debugger: Modelica Model

class RC // 24 equations and variables
…
equation

…
ground1.p.v = 0.0;
0.0 = resistor1.p.i + resistor1.n.i;
resistor1.i = resistor1.p.i;
resistor1.T_heatPort = resistor1.T;
capacitor1.i = capacitor1.C * der(capacitor1.v);
capacitor1.v = capacitor1.p.v - capacitor1.n.v;
0.0 = capacitor1.p.i + capacitor1.n.i;
capacitor1.i = capacitor1.p.i;
…

end RC;

19

Output from Compiler Frontend:
Sorted ODE or DAE (Differential Algebraic Equations)

class RC // 24 equations and variables
…

equation
…
ground1.p.v = 0.0;
0.0 = resistor1.p.i + resistor1.n.i;
resistor1.i = resistor1.p.i;
resistor1.T_heatPort = resistor1.T;
capacitor1.i = capacitor1.C *

der(capacitor1.v);
capacitor1.v = capacitor1.p.v –

capacitor1.n.v;
0.0 = capacitor1.p.i + capacitor1.n.i;
capacitor1.i = capacitor1.p.i;
...

end RC;

class RC // 5 equations and variables
…
// 14 alias variables 5 constants
equation
sinevoltage1.signalSource.y =

sinevoltage1.signalSource.offset + (if time <
sinevoltage1.signalSource.startTime then 0.0
else sinevoltage1.signalSource.amplitude *
sin(6.28318530717959 *
(sinevoltage1.signalSource.freqHz * (time -
sinevoltage1.signalSource.startTime)) +
sinevoltage1.signalSource.phase));
resistor1.v = capacitor1.v -

sinevoltage1.signalSource.y;
capacitor1.i = -resistor1.v / resistor1.R_actual;
resistor1.LossPower = -resistor1.v *

capacitor1.i;
der(capacitor1.v) = capacitor1.i / capacitor1.C;

end RC;

20

Symbolic Transformations

 From source code to flat equations
 Most of the structure remains
 Few symbolic manipulations (mostly

simplification/evaluation)

 Equation System Optimization
 Changes structure
 Strong connected components
 Variable replacements
 … and more

21

Tracing Symbolic Transformations

 Simple Idea
 Store transformations as equation metadata

 Works best for operations on single equations
 Alias Elimination (a = b)
 Equation solving (f1(a,b) = f2(a,b), solve for a)

 Multiple equations require special handling
 Gaussian Elimination (linear systems, several

equations)
 ...

22

Tracing Overhead?

 OpenModelica compiler implementation is so fast that
tracing is enabled by default
 1 extra comparison and/or cons operation per

optimization
 Not noticeable during normal compilation
 Less than 1% time overhead for tracing

 No real overhead unless you output the trace

23

a = b
c = a + b
d = a - b

c = a + b (subst a=b) =>
c = b + b (simplify) =>
c = 2 * b

d = a - b (subst a=b) =>
d = b - b (simplify) =>
d = 0.0

 The alias relation a=b
stored in variable a

 The equations are e.g.
stored as
(lhs,rhs,list<ops>)

Substitution Example, Storing the Trace

24

Debugging Using the Transformation Trace

 Text output
 Initial implementation
 Verify performance and correctness of the trace

 Structured output based on database storage
 Graphical debugging
 Cross-referencing equations (dependents/parents)
 Ability to see why a variable is solved in a particular

way
 Requires a schema

 Future work/work in progress

25

Trace Example (1)

(1) substitution:
y + der(x * (time * z))
=>
y + der(x * (time * 1.0))

(2) simplify:
y + der(x * (time * 1.0))
=>
y + der(x * time)

(3) expand derivative
(symbolic diff):

y + der(x * time)
=>
y + (x + der(x) * time)

(4) solve:
0.0 = y + (x + der(x) * time)
=>
der(x) = ((-y) - x) / time

0 = y + der(x * time * z); z = 1.0;

26

differentiation:

d/dtime L ^ 2.0

=>

0.0

differentiation:

d/dtime x ^ 2.0 + y ^ 2.0

=>

2.0 * (der(x) * x + der(y) * y)

Substitution:

2.0 * (der(x) * x + der(y) * y)

=>

2.0 * ($DER.x * x + $DER.y * y)

=>

2.0 * (u * x + $DER.y * y)

=>

2.0 * (u * x + v * y)

=>

2.0 * (u * xloc[1] + v * xloc[0])

Trace Example (2)

27

Readability of Transformation Trace

 Most equations have
very few transformations
on them

 Most of the interesting
equations have a few
 Still rather readable

 Some extra care to
handle Modelica variable
aliasing

Ops Frequency Comment

0 457 Parameters

1 89 Dummy eq & know var

2 720 Alias vars

3 479 Alias vars

4 124 Alias after simplify

5 25 Alias after simplify

6 99 Alias after simplify

7 55 Scalar eq

8 37 ...

9 110 ...

10 72 ...

11 12 ...

12 25 ...

13 35 ...

14 3 Known constant after many
replacements

21 27 World object (3x3 matrix
with many occurances of
aliased vars)

MSL 3.1 MultiBody DoublePendulum

28

Future Work on Transformational Debugging

 Structural debug information queries based on a
database

 Graphical debugger
 Simulation runtime uses database
 More operations recorded

 Dead code elimination
 Control flow and events
 Forgotten optimization modules

29

Integrated Debugging

30

Modelica Specific

Need to Combine Approaches to Help the User

Modelica

OpenModelica

OpenModelica
Simulation
Runtime

Simulation
Files

Error Discovered

How do we fix it?
Where is the actual
code that caused

this error?
D

ebugging &
 Tracing

C
om

pilation &
 Sim

ulation

• Where is the actual
code that caused this
error?

• How do we go back?
• How can we automate

the round trip?

model Apollo
…
equation

…
gravity = …;
…

end Apollo;
Error

?

?

31

Integrated Debugging Approach

• Mark the error
• Build an interactive

graph from the
transformation trace

• Walk the graph
interactively to find the
error

32 32

Debugging Based on User Interaction

• The interactive dependency graph contains two types of
edges:
• Calculation dependency edges
• Origin edges from traced symbolic transformations

• The user interacts with the dependency graph in several
ways:
• Displaying simulation results through selection of the variables
• Classifying a variable as having wrong values
• Classifying an equation as correct
• Building a new dependency graph based on the new set of variables

with wrong values (classified variables) or by modifying the equations
or parameter values nodes.

• Displaying model code by following origin edges
• Invoking the algorithmic code debugging subsystem

33

Debugging Summary

• Debugging equation-based models present new
challenges

• Equation systems are transformed symbolically to a
form hard for the user to recognize

• Static transformational debugging explains the
transformations and maintains a mapping between the
low level and the high level model

• Dynamic debugging helps to walk through a
model/program and inspect data for an execution

• Goal: integrated static/dynamic debugging approach

34

Requirements traceability and
dynamic model verification

35

Introduction: ModelicaML Background

• ModelicaML Eclipse plug-in
Modelica/UML profile integrates
a subset of the UML and the
Modelica language in order to
leverage standardized graphical
notations of UML for system
modeling and the simulation
power of Modelica

• ModelicaML enables engineers to
describe

– System requirements
– System design (structure

and behavior)
– Usage-, test scenarios

• vVDR (Virtual Verification of Designs against Requirements) is a method that
enables a model-based design verification against requirements

• vVDR is supported in ModelicaML

36

Introduction: vVDR Method

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM Requirement
Monitor Models

Scenario
Models

SM

Designs
Alternative
Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand
verification of designs
against requirements
using automated model
composition at any time
during development.

AUTOMATED

Actor

Reports

*

Focus of this
presentation

37

Challenge

• We want to verify different design alternatives against sets of requirements
using different scenarios. Issues:
1) How to find valid combinations of design alternatives, scenarios and
requirements in order to enable an automated composition of verification
models?
2) Having found a valid combination: How to bind all components correctly?

…

Create Verification
Models

… RMM
1. Verification

Model VM DAM SM

2. Verification
Model VM …

…

Requirement
Models

Scenario
Models

Designs Alternative
Models

DAM SM
DAM

DAM
SM

SM
SMSM

SM
RMM 1

RMM

RMM

RMM

RMM
SM RMM

RMM

RMM

RMM

… …
n. Verification

Model

*

38 Page 38

Solution Proposal: Value Bindings

• Value Binding enables the automation of
verification model composition

• Value Bindings include the definition of:
• Client (component that requires data from

other components)
• Provider (component that provides data

for other components)
• Mediator (mediates between clients and

providers)
• Depending on which mediators and

providers are in place we can:
• Determine which clients can be satisfied
• Find valid combinations and generate

verification models
• Generate binding code for client

components in verification models

c

p

M

Clients

Mediators

Providers

VM

Verification
Model

RMM

Requirement
Monitor
Models

SM

Scenario
Model

DAM

Design
Alternative

Model

M

c

c
p

c

p

c
p

ORM

Other
Required
Models

39

Example: Design Alternative Model

• Simplified Aircraft Potable Water System
- Overhead tank system
that can be filled using a
liquid source from bottom
with the aircraft on ground.

- Controller monitors the
level of liquid and controls
the valves according to its
mode (e.g. “fill”-, “drain”-,
“pre-selected value fill”-
mode).

Liquid in (from liquid source)Liquid out

40

Example: Requirement Monitor Model
”The time to fill an empty tank shall be 300 sec. max.”

“status” is set by the violation monitor and
indicates the following:

0 = not evaluated
1 = evaluated and not violated
2 = violated

Clients to get input values
from design model providers

41

Example: Scenario Model “Filling and draining the ta

Example scenario: Tank cleaning by filling
and draining the tank several times when the
aircraft is on ground.

Providers for design model clients

Action code:
mode := 1; // fill mode
preselectedLevel := 1;
pumpPowerFactor := 1;

42

Example: Mapping Scenarios to Requirements

• Automatic generation/selection of which scenarios
are appropriate to verify which requirements

• One scenario can be used to verify multiple requirements (to increase
requirements coverage and confidence in verification results)

• Each requirement should be referenced by at least one scenario

These relations
are now
generated
automatically

43

Simulation and Report Generation in ModelicaML

•Verification models are
simulated.
The generated Verification
Report is a prepared summary
of:
• Configuration, bindings
• Violations of requirements
• etc.

44

Conclusion

• The ModelicaML Value Bindings approach enables automated model
composition, which is used in ModelicaML for automatic generate
verification models

• Bindings do not modify client or provider models (important when
libraries are used)

• Using binding definitions we can find valid combinations and
automatically generate verification models

• The generated verification models become artifacts that are created
automatically on-demand and do not need to be maintained

45

Overall Summary

• Goal of integrated model-based development
This talk covers two aspects

• Integrated static/dynamic debugging of models
• Dynamic debugging of large algorithmic models fully functional

• Static Equation debugging prototype need to be integrated and scaled up for large
models

• Requirements traceability and verification
• Automated dynamic verification and generation of verification models

• Need to be integrated in Modelica standard

