
Assimulo - a Python package
for solving differential equations

with interface to equation based languages

Christian Andersson, Claus Führer

Johan Åkesson

LCCC workshop Lund
September 2012

Lund University / Modelon AB, 2012 1

Let’s move the focus ...

Lund University / Modelon AB, 2012 2

ODE and DAE solvers in two disjoint worlds

Industrial Simulation Tasks

I highly complex models

I high robustness standards

I high documentation standards

I long life cycle

−→ one or two ODE/DAE packages meet these requirements.

Academic Simulation Tasks

I a few, low scale test models

I lab standard quality (validation of concept)

I good analyzed algorithms, poor code documentation

I short life cycle, often coupled on individual career steps.

−→ dozen of codes produced (and forgotten) this way.

Lund University / Modelon AB, 2012 3

ODE and DAE solvers in two disjoint worlds

... highly valid still today.

Lund University / Modelon AB, 2012 4

Motivation

I Give the academic world access to complex models −→ FMI

I Give the industrial world access to a variety of ODE/DAE
codes (even experimental ones): −→ Assimulo

I Give students in scientific computing an intuitive access to
industrial standard solvers: −→ Assimulo

Modeling
Software

Export using an
open standard

Import into an open
simulation environment

Dymola
Simpack
SimulationX
JModelica.org
etc...

Functional Mock-up
Interface (FMI)

PyFMI together
with Assimulo

Lund University / Modelon AB, 2012 5

Functional Mock-up Interface (FMI)

FMI is an open interface for model exchange with the idea that tools
may generate and exchange dynamic system models.

The FMI supports model defined as discontinuous ordinary differential
equations.

I Model interface The equations are evaluated and the model interaction
is performed by standardized C functions.

I Model description The variable information of the model is contained in
an XML-file.

I Additional data Model data, such as tables and maps may also exists.

⇒ Talk by Torsten Blochwitz on Wednesday.

Lund University / Modelon AB, 2012 6

Assimulo is written in Python, why?

Benefits of using Python:

I Open-source language

I Interpreted

I Object-oriented

I Many freely available packages
I NumPy
I SciPy
I Matplotlib
I Cython

I Highly flexible for interfacing to
C, FORTRAN ...

I Ideal in teaching.

Lund University / Modelon AB, 2012 7

Assimulo

Python workbench for simulation of ordinary differential equations.

The intention is to provide a common high-level interface for a
variety of different solvers.

Supports

I problems formulated as first or second order ordinary
differential equations

I problems formulated as implicit ordinary differential equations
including overdetermined problems.

Lund University / Modelon AB, 2012 8

Assimulo, problem formulations
I Explicit hybrid ODEs

ẏ = f(t, y, sw), y(t0) = y0, sw(t0) = sw0

I Implicit hybrid ODEs (also called DAEs)

F (t, y, ẏ, sw) = 0, y(t0) = y0, ẏ(t0) = ẏ0, sw(t0) = sw0

I Mechanical systems in second order explicit ODE form

p̈ =M(p)−1f(t, p, ṗ)

I Mechanical systems in (overdetermined) implicit ODE form

ṗ = v

M(p)v̇ = f(t, p, v)−GT (p)λ

0 = gconstr(p)

0 = G(p)v

I Delay (retarded) differential equations.

Lund University / Modelon AB, 2012 9

Assimulo, solvers

Currently, solvers written in Python, FORTRAN and C are
available.

I IDA - Multistep method for DAEs

I CVode - Multistep methods for ODEs

I ODASSL - Multistep methods for overdetermined DAEs

I RADAU5 - Runge–Kutta method for DAEs

I GLIMDA - General linear methods methods for DAEs

I and we are working on a ”solver museum” (oldest code in
restoration 1983).

IDA and CVode are production quality solvers from the
SUNDIALS suite.

Lund University / Modelon AB, 2012 10

Assimulo, overview

Problem

Solver

Implicit
ODE

Explicit
ODE

IDA CVODE

GLIMDA

ODASSL

DOPRI5

RODAS LSODAR

RADAU5

RADAU5

Explicit ODE
(2nd order)

GGL

Implicit ODE
Overdetermined

Newmark

HHT-alpha
methods

Functional Mock-up Unit

A
S
S

IM
U

L
O

Figure : Connection between the different problem formulations and the
different solvers available in Assimulo. The connection of the
Functional Mock-up Interface to Assimulo is also shown.

Lund University / Modelon AB, 2012 11

Simple example workflow

Make a problem

def rhs(t,y):

A = array([[0, 1], [-2, -1]])

yd = N.dot(A, y)

return yd

y0 = array([1.0, 1.0])

t0 = 0.0

linmodel = Explicit_Problem(rhs , y0, t0)

Create a solver instance

sim = CVode(linmodel)

... and simulate

t, y = sim.simulate(tfinal)

Lund University / Modelon AB, 2012 12

Assimulo can be quite verbose...

F i n a l Run S t a t i s t i c s : L i n e a r Test ODE

Number o f E r r o r Test F a i l u r e s = 4
Number o f F−E v a l Dur ing Jac−E v a l = 0
Number o f F u n c t i o n E v a l u a t i o n s = 153
Number o f J a c o b i a n E v a l u a t i o n s = 0
Number o f N o n l i n e a r Convergence F a i l u r e s = 0
Number o f N o n l i n e a r I t e r a t i o n s = 149
Number o f Root E v a l u a t i o n s = 0
Number o f S t e p s = 84

S o l v e r o p t i o n s :

S o l v e r : CVode
L i n e a r M u l t i s t e p Method : Adams
N o n l i n e a r S o l v e r : F i x e d P o i n t
Maxord : 12
T o l e r a n c e s (a b s o l u t e) : 1e−06
T o l e r a n c e s (r e l a t i v e) : 1e−06

S i m u l a t i o n i n t e r v a l : 0 . 0 − 1 0 . 0 s e c o n d s .
E l a p s e d s i m u l a t i o n t ime : 0 . 0 s e c o n d s .

Lund University / Modelon AB, 2012 13

Controlling the method

sim.atol=N.array([1.0,0.1])*1.e-5

sim.rtol=1.e-8

sim.maxord=3

sim.discr=’BDF’

sim.iter=’Newton ’

Lund University / Modelon AB, 2012 14

Discontinuities – a Continuous Challenge
class Extended_Problem(Explicit_Problem):

#Sets the initial conditions directly into the problem

y0 = [0.0, -1.0, 0.0]

sw0 = [False ,True ,True]

#The right -hand -side function (rhs)

def rhs(self , t, y, sw):

....

#The event function

def state_events(self , t, y, sw):

event_0 = y[1] - 1.0

...

return array([event_0 ,event_1 ,event_2])

#Responsible for handling the events.

def handle_event(self , solver , event_info):

event_info = event_info[0]

while True: #Event Iteration

self.event_switch(solver , event_info) #Turns the switches

...

#Helper function for handle_event

def event_switch(self , solver , event_info):

...

Lund University / Modelon AB, 2012 15

Languages have the potential to inform

I Are there discontinuities?

I State/Time events?

I Are there linear components?

I What are differential, what are algebraic variables? (”loop
closure” conditions versus algebraic equations)

I Derivatives?

Lund University / Modelon AB, 2012 16

The compiler might know more

Why extensible compilers?

Metrics tool

42

Compiler

Numeric support

1

Sparsity structure
of Jacobian

(Sorry Görel for changing your slide ...)

Lund University / Modelon AB, 2012 17

Plans/ideas/wishes for the future

I Would like to stimulate to open the FMI for a wider range of
problem formulations - higher index DAES(?)

I Continue to expand the solvers available in Assimulo
I Work on the museum.
I Introduce problem formulation for delay differential equations
I Generalize solvers for discontinuity handling

I Potentials of language/compiler aided numerics.

I Automatic differentiation: a separate tool or an integrated
part of the language-solver chain?

Lund University / Modelon AB, 2012 18

Thank you!

... and feel free to try it out!

I Assimulo www.assimulo.org

I PyFMI www.pyfmi.org

Lund University / Modelon AB, 2012 19

	
	Assimulo

