Modeling Seen as Programming

Klaus Havelund
NASA JPL, California Inst. of Technology, USA

System Design meets Equation-based Languages

September 21, 2012

&

Acknowledgements

Part of the work described in this publication was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

Copyright 2012. All rights reserved.

MSL

o>

Landing

3.5 million lines of C code

01011 911011130y,
%%-}‘f}f’ ADII0IBIose 0116, "L
p10101" +0101000100011107.
111010 010101011010110101 '}
101010 1010101 - 1010101
p11001 010101010100101000
10101L 49000100000001101/ /il
1011010 “914101010101016" ;1%

‘1L11101010U‘ J1010111

PEEEE S l111.1"

m
]1]01 mmh]‘ |||
501000010109805o1 ‘u il

Terminology

Terminology

@ model engineering

Terminology

@ model engineering = engineering models

Terminology

@ model engineering = engineering models

@ model-based engineering

Terminology

@ model engineering = engineering models
@ model-based engineering

@ mode-based programming

Terminology

model engineering = engineering models
model-based engineering

mode-based programming

models, specifications used in software engineering (formal methods)

Runtime verification

@ Start with a system to monitor.

system

Runtime verification

@ Instrument the system to record relevant events.

instrumentation

system

Runtime verification

@ Provide a monitor.

monitor

instrumentation

system

Runtime verification

@ Dispatch each received event to the monitor.

monitor

observe

instrumentation

system

Runtime verification

o Compute a verdict for the trace received so far.

monitor

verdict
—

observe

instrumentation

system

Runtime verification

@ Possibly generate feedback to the system.

verdict
monitor pr—
observe feedback
instrumentation

system

Runtime verification

@ We might possibly have synthesized monitor from a property.

property
verdict
monitor pr—
observe feedback
instrumentation

system

COMMAND (" STOP_CAMERA", 1,22:50.00)
W COMMAND ("ORIENT_ANTENNA_TOWARDS_GROUND", 2,22:50.10)
% SUCCESS ("ORIENT_ANTENNA_TOWARDS_GROUND", 3,22:52.02)
COMMAND ("STOP_CAMERA", 4,22:55.01)
SUCCESS ("ORIENT_ANTENNA_TOWARDS_GROUND", 5,22:56.19)
COMMAND ("STOP_ALL", §,23:01.10)
FAIL ("ORIENT_ANTENNA_TOWARDS_GROUND", 7,23:02.02)

requirements
relating events
across time

External versus internal DSL

External versus internal DSL

@ External DSL

External versus internal DSL

o External DSL
» small language typically with very focused functionality

External versus internal DSL

@ External DSL

» small language typically with very focused functionality
» specialized parser

External versus internal DSL

@ External DSL

» small language typically with very focused functionality
» specialized parser
> pros:

External versus internal DSL

@ External DSL

» small language typically with very focused functionality
» specialized parser
> pros:

* can be optimally succinct

External versus internal DSL

@ External DSL

» small language typically with very focused functionality
> specialized parser
> pros:
* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language

External versus internal DSL

o External DSL
» small language typically with very focused functionality
» specialized parser
> pros:

* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language

* analyzable: a spec can be analyzed easily, visualized, etc.

External versus internal DSL

o External DSL
» small language typically with very focused functionality
» specialized parser
> pros:

* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language

* analyzable: a spec can be analyzed easily, visualized, etc.

@ Internal DSL

External versus internal DSL

@ External DSL

» small language typically with very focused functionality

» specialized parser

> pros:
* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language
* analyzable: a spec can be analyzed easily, visualized, etc.

@ Internal DSL
> an extension of an existing programming language

External versus internal DSL

o External DSL
» small language typically with very focused functionality
» specialized parser
> pros:

* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language

* analyzable: a spec can be analyzed easily, visualized, etc.

@ Internal DSL
> an extension of an existing programming language
» typically an API - using base language's features only

External versus internal DSL

o External DSL
» small language typically with very focused functionality
» specialized parser
> pros:

* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language

* analyzable: a spec can be analyzed easily, visualized, etc.

@ Internal DSL
> an extension of an existing programming language
» typically an API - using base language's features only
> pros:

External versus internal DSL

@ External DSL

» small language typically with very focused functionality
> specialized parser
> pros:
* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language
* analyzable: a spec can be analyzed easily, visualized, etc.
@ Internal DSL

> an extension of an existing programming language
» typically an API - using base language's features only
> pros:

* easier to develop and later adapt

External versus internal DSL

@ External DSL

» small language typically with very focused functionality

» specialized parser

> pros:
* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language
* analyzable: a spec can be analyzed easily, visualized, etc.

@ Internal DSL

> an extension of an existing programming language
» typically an API - using base language's features only
> pros:
* easier to develop and later adapt
* expressive, the programming language is never far away

External versus internal DSL

@ External DSL

» small language typically with very focused functionality

» specialized parser

> pros:
* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language
* analyzable: a spec can be analyzed easily, visualized, etc.

@ Internal DSL

> an extension of an existing programming language
» typically an API - using base language's features only
> pros:
* easier to develop and later adapt
* expressive, the programming language is never far away
* allows use of existing tools such as type checkers, IDEs, etc.

External versus internal DSL

@ External DSL:

» small language typically with very focused functionality

» specialized parser

> pros:
* can be optimally succinct
* ‘“easy” to learn for person not familiar with programming language
* analyzable: a spec can be analyzed easily, visualized, etc.

@ Internal DSL:

> an extension of an existing programming language
» typically an API - using base language's features only
> pros:
* easier to develop and later adapt
* expressive, the programming language is never far away
* allows use of existing tools such as type checkers, IDEs, etc.

LogScope V1 syntax

Al LOGSCOPE/SL GRAMMAR (satekind) — always |state | step
AL Lexical Elements (rule) — (event) *=>* (actions)
(CODE) — (:Python code ..) (actions) — (action) (v, (action))*
(NAME) — [a-2A-2_] [a-2A-20-9_.]* {action) —

(NAME) [* (% arguments)*)*]
(NUMBER) — (0-3]+ [done

| error

(STRING) — . *
(COMMENT) — (COMMENT,) | (COMMENT:) {ergumancs) = argunsen) € * {arguamc])')

(argumen) — (NUMBER) | STRING) | (NAME)
(coMMENT,) — /+

(COMMENT:) — ¥ .. \n (rames) = (NAME) ', (NAME)!

AL2 Grammar Al24. Evems
AL21. Specifications (evenr)
" (ype) *{* (consraines) v}
(specification) — [(CODE)] (monitor) [where (predicate)]
do (code))

(monitor) — lignore] (monitorspec)
(constraints) —

(monitorspec) — (pattern) | (automaton) [{constrain) (*, * (constrain))*]
A122. Parems (ope)
ComvaND
(patern) — foon
ern (NAME) »:* (event) *=>* (consequence) | ChanneL
fupto (even)] | CHANGE

| PRODUCT

(constrains) — (NAME) <" (range)

(consequence) —
{evens)

((NUMBER) ", " (NUMBER) *)*
{" (indexes) "}*
(M

(awtomaton) — (indexes) — (index) (*, * (index))*
.-llnln.mm (NAME) *{*
(inder) — (val)*:* {range)
n.mn (actions)]

llnt 51 (value) — (NUMBER) | (STRING)
-) (rames) (predicate) —
(code)
{state) — } &ﬁ“"i nl'd(p;di;un))
. i . ate) and (predicate
l(m#") ' (statckind) (NAME) [{formals)] "{ | Ereter)
.). | (% (predicare) *)*
(ormals) — » (*(names)") * (co(c)oTJE)
(modifier) — hot | mittal | (NAME) * (v (arguments) »)*

LogScope V2 syntax

rule_schema ::=
modifier+ "{" transition+ "}"
| modifier* ident [" (" ident,* ")"] ["{" transition+ "}"]
modifier ::=
"init" | "always" | "step" | "next" | "hot"
transition ::= pattern,* "=>" pattern, *

pattern ::= ["!"] ident ["(" constraint,* ")"]
constraint ::=

ident ":" range
| range

Quote

Hemmingway & Hotchner, 1920ies:

If you are lucky enough to have lived in Paris as a young man, then
wherever you go for the rest of your life, it stays with you, for Paris is a
moveable feast.

Quote

Havelund, 2012:

If you are lucky enough to have explored VDM as a young man, then
wherever you go for the rest of your life, it stays with you, for VDM is a
moveable feast.

What is VDM?

e Combination of imperative and functional programming (data types,
pattern matching, curried functions, lambda abstractions, side effects,
loops, exceptions,)

Design-by-contract: pre/post conditions + invariants
Predicate subtypes

Non-deterministic expressions (let x be such that P(x))

First order predicate logic as Boolean expressions: universal and
existential quantification

Sets, lists and maps as built-in data types
VDM™* added object orientation (Nico Plat et. al)

Chemical plant model in VDM versus Scala

class Plant

instance variables

alarms : set of Alarm;

schedule : map Period to set of Expert;
inv PlantInv(alarms,schedule);

operations

PlantInv: set of Alarm * map Period to set of Expert ==>

bool
PlantInv(as,sch) ==
return
(forall p in set dom sch & sch(p) < {}) and class Plant(alarms: Set[Alarm],
(forall a in set as & schedule: Map[Period, Set[Expert]]) {
forall p in set dom sch & assert(PlantInv(alarms, schedule))
exists expert in set sch(p) &
a.GetReqQuali() in set expert.GetQuali()); def PlantInv(alarms: Set[Alarm], schedule: Map[Period,
Set[Expert]]): Boolean =
types (schedule.keySet forall { schedule(_) != Set() }) &&

(Calarms forall { a =>
schedule.keySet forall { p =>
schedule(p) exists { expert =>

public Period = token;

operations a.reqQuali ? expert.quali
public ExpertToPage: Alarm * Period ==> Expert
ExpertToPage(a, p) == }
let expert in set schedule(p) be st B
a.GetRegQuali() in set expert.GetQuali()
in def ExpertToPage(a: Alarm, p: Period): Expert = {
return expert require(a ? alarms & p ? schedule.keySet)
pre a in set alarms and schedule(p) suchthat {expert =>
p in set dom schedule a.reqQuali ? expert.quali}
post let expert = RESULT } ensuring { expert =>
in . a.reqQuali ? expert.quali &&
expert in set schedule(p) and expert ? schedule(p)

t.GetQualiQ); }

Scala is a high-level unifying language

Object-oriented + functional programming features
Strongly typed with type inference

Script-like, semicolon inference

Sets, list, maps, iterators, comprehensions

Lots of libraries

Compiles to JVM

Lively growing community

Commands must succeed

@ We are analyzing log files containing information about commands
being issued, and their success and failure respectively.

Requirement CommandMustSucceed
An issued command must succeed, without a failure to occur before then. J

Property in LogScope

@ For comparison we first show spec in the external DSL: LOGSCOPE.
@ a hot state must be exited before end of log (non-final state).

automaton CommandMustSucceed {
always {
Command(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {
Fail (name,number) => error
Success(name,number) => ok

}
}

Property in LogScope

@ Using LOGSCOPE's temporal logic layer.

[scope

pattern CommandMustSucceed:
Command(n,x) =>
[
I Fail (n,x),
Success(n,x),

Events in TraceContract

@ First we need to define the events we observe:

» commands being issued, each having a name and a number
> successes of commands
» failures of commands

@ Each event type sub-classes a type: Event
@ case-classes allow for pattern matching over objects of the class

abstract class Event

case class Command(name: String, nr: Int) extends Event
case class Success(name: String, nr: Int) extends Event
case class Fail (name: String, nr: Int) extends Event

Property in TraceContract - looks very similar

@ Uses partial functions: {case ... =>...} defined with pattern matching
as arguments to DSL functions (require and hot) defined in Monitor
class. RequireSuccess is a user-defined function representing a state.

@ A quoted name, such as ‘name' represents the value of that name.

class CommandMustSucceed extends Monitor[Event] {

always {
case Command(n, x) => RequireSuccess(n, x)

}

def RequireSuccess(name: String, number: Int) =
hot {
case Fail (‘name’, 'number') => error
case Success(‘name’, ‘number') => ok

}

Property in TraceContract - looks very similar

@ Uses partial functions: {case ... =>...} defined with pattern matching
as arguments to DSL functions (require and hot) defined in Monitor
class. RequireSuccess is a user-defined function representing a state.

@ A quoted name, such as ‘name' represents the value of that name.

class CommandMustSucceed extends Monitor[Event] {
require {
case Command(n, x) => RequireSuccess(n, x)

}

def RequireSuccess(name: String, number: Int) =
hot {
case Fail (‘name’, 'number') => error
case Success(‘name’, ‘number') => ok

}

Inlining the call of RequireSuccess(n,x)

@ Since RequireSuccess(n, x) is a function, the call of it can be inlined.

o After all, this is “just” a program and standard program
transformation works.

@ The result is an interesting temporal logic like specification with an
un-named hot state.

class CommandMustSucceed extends Monitor[Event] {
require {
case Command(n, x) =>
hot {
case Fail (‘n’, 'x') => error
case Success(‘n’, ‘x‘) => ok

}

Same property in LTL

o TRACECONTRACT also offers future time linear temporal logic (LTL).

@ allowing to write events as formulas, negations, propositional
formulas, and temporal.

@ ¢ until 1) means: Y must eventually hold, and until then ¢ must hold.

class CommandMustSucceed extends Monitor[Event] {
require {
case Command(n, x) =>
not(Fail (n, x)) until (Success(n, x))

Same property in LTL

o TRACECONTRACT also offers future time linear temporal logic (LTL).

@ allowing to write events as formulas, negations, propositional
formulas, and temporal.

@ ¢ until 1) means: Y must eventually hold, and until then ¢ must hold.

class CommandMustSucceed extends Monitor[Event] {
require {
case Command(n, x) =>
not(Fail (n, x)) until (Success(n, x))

@ note mix of Scala's pattern matching (to catch arguments of
command) and LTL.

Success of power commands

Requirement PowerCommandSuccess

Power commands must succeed within 10 seconds.

Property in LogScope

@ Defining and using Python predicates in LOGSCOPE.

[Ke:4 Scope
©

{:
def within(t1,t2, max):
return (t2—tl) <= max

3

pattern PowerCommands:
Command(n, x, t1) where {: n.startswith("PWR") :} =>
Success(n, x, t2) where {: within(t1,t2,10000) :}

Same property in TraceContract

@ TRACECONTRACT allows direct integration of code and formulas.

class PowerCommands extends Monitor[Event] {
def within(tl: Int,t2: Int, max: Int) = (t2—tl) <= max

require {
case Command(n, x, t1) if n.startsWith ("PWR”) =>
hot {
case Success(‘'n’, ‘x‘, t2) if within(t1,t2,10000) => ok

}

10 first commands must succeed

Requirement First10CommandsMustSucceed

The first 10 issued commands must succeed, without a failure to occur
before then.

Counting: first 10 commands must succeed

@ Code (here counting and testing on counter) can be mixed with logic.

@ That is: increase counter and return LTL formula.

class First10CommandsMustSucceed extends Monitor[Event] {
var count = 0
require {
case Command(n, x) if count < 10 =>
count = count + 1
not(Fail (n, x)) until (Success(n, x))

long sequence

Requirement CommandSequence

Whenever a flight software command is issued, there should follow a
dispatch and then exactly one success.

No dispatch failure before the dispatch, and

no failure between dispatch and success.

Property in LogScope

@ Using LOGSCOPE's sequence operator.

pattern CommandSequence:
Command(n,x) =>
[

I' DispatchFailure (n,x),
Dispatch(n,x),

' Fail (n,x),
Success(n,x),

I' Success(n,x)

]

Same property in TraceContract
@ TRACECONTRACT allows mixing of states.

class CommandSequence extends Monitor[Event] {
require {
case Command(n, x) =>
hot {
case D|spatchFa|Iure (‘
case Dispatch('n’, ‘x
hot {
case Fail (‘n‘, 'x') => error
case Success(‘'n’, ‘x') =
state {
case Success(‘n’, ‘x‘) => error

}

n‘, 'x') => error
N o=>

Visualization of LogScope statemachine

@Sl

k‘()MM AND{Type : "FSW" Number : y,Stem : x}

_SAxy)]

EVR{Number : yDispatch : x} EVR {Number : y DispatchFailure : x}

L s3xy

EVR{Number : y Success : x} EVR {Failure : x,Number : y}

SVR {Number : y.Success : x}

Much more difficult to do with internal DSL such as TraceContract.

Property that we cannot write in LogScope

@ Antecedent (condition) containing multiple events.

pattern CommandSequenceAsCondition:

[
Command(n,x),
I' DispatchFailure (n,x),
Dispatch(n,x)

=>
[
' Fail (n,x),
Success(n,x),
I Success(n,x)

]

However we can write it in TraceContract
@ TRACECONTRACT by just changing one of the state modifiers.

class CommandSequence extends Monitor[Event] {
require {
case Command(n, x) =>
state {
case D|spatchFa|Iure (‘
case Dispatch('n’, ‘x
hot {
case Fail (‘n‘, 'x') => error
case Success(‘'n’, ‘x') =
state {
case Success(‘n’, ‘x‘) => error

}

n‘, 'x') => error
N o=>

Some notes from a notebook - before TraceContract

First a spec in LogScope as it is:

monitor CommandsMustSucceed {
always {
COMMAND(name : x) == RequireSuccess(x)
}

hot RequireSuccess{cmdName) {
FAIL(name : cmdName) == error
SUCCESS(name : cmdName) => ok
}
}

We can try to eliminate the state RequireSuccess by simply inlining it:

monitor CommandsMustSucceed {
always {
COMMAND(name : x) => hot {
FAIL(hame : x) => error
SUCCESS(name : X) => ok

TraceContract later offered this feature.

Alternation

Requirement AlternatingCommandSuccess

Commands and successes should alternate.

State machine solution

class AlternatingCommandSuccess extends Monitor[Event] {
property (s1)

def s1: Formula =

state {
case Command(n, x) => s2(n, x)
case _ => error

}

def s2(name: String, number: Int) =

state {
case Success('name’, ‘number’) => sl
case _ => error

}

State machine solution - with next-states

class AlternatingCommandSuccess extends Monitor[Event] {
property (s1)

def s1: Formula =
next {
case Command(n, x) => s2(n, x)

}

def s2(name: String, number: Int) =
next {
case Success('name’, ‘number’) => sl

}

A past time property

@ Properties so far have been future time properties: from some event,
the future behavior must satisfy some property.

@ The following requirement refers to the past of some event (success).

Requirement SuccessHasAReason
A success must be caused by a previously issued command.

TraceContract offers limited rule-based programming
@ State logic and LTL cannot express this property.

TraceContract offers limited rule-based programming

@ State logic and LTL cannot express this property.

© TRACECONTRACT offers a limited form of rule-based programming,
were a fact f (sub-classing class Fact) can be queried (f7), created
(f+), and deleted (f—). The result in the latter two cases is True.

TraceContract offers limited rule-based programming

@ State logic and LTL cannot express this property.

© TRACECONTRACT offers a limited form of rule-based programming,
were a fact f (sub-classing class Fact) can be queried (f7), created
(f+), and deleted (f—). The result in the latter two cases is True.

class SuccessHasAReason extends Monitor[Event] {
case class Commanded(name: String, nr: Int) extends Fact

require {
case Command(n, x) => Commanded(n, x) +
case Success(n, x) =>
if (Commanded(n, x) ?)
Commanded(n, x) —
else
error

The ?- abbreviation

@ We can we make this monitor simpler by using test-and-set: f 7—, for
a given fact f, meaning: return true iff. the fact f is recorded, delete
the fact in any case.

class SuccessHasAReason extends Monitor[Event] {
case class Commanded(name: String, nr: Int) extends Fact

require {
case Command(n, x) => Commanded(n, x) +
case Success(n, x) => Commanded(n, x) ?—

}
}

Making monitors of monitors

@ We can create a new monitor which includes other monitors as
sub-monitors. Useful for organizing properties.

@ The semantics is the obvious one of conjunction: all monitors will get
checked individually.

class CommandRequirements extends Monitor[Event] {
monitor(
new CommandMustSucceed,
new MaxOneSuccess,
new SuccessHasAReason)

Analyzing a complete trace (log analysis)

@ To verify a trace: first create it, then instantiate monitor, and call
verify method on monitor with trace as argument.

object TraceAnalysis extends Application {
val trace: List[Event] =
List (

Command(”STOP_DRIVING”, 1),
Command(” TAKE_PICTURE", 2),
Fail ("STOP_DRIVING”, 1),
Success(” TAKE_PICTURE”, 2),
Success("SEND_TELEMETRY”, 42))

val monitor = new CommandRequirements
monitor. verify (trace)

}

Alternatively: analyzing event by event (online monitoring)

@ To verify a sequence of events: instantiate monitor, and call verify
method on monitor for each event, and call end() if event flow
terminates.

object TraceAnalysis extends Application {
val monitor = new CommandRequirements
monitor. verify (Command(”STOP_DRIVING”, 1))
monitor. verify (Command(” TAKE_PICTURE”, 2))
monitor. verify (Fail ("STOP_DRIVING”, 1))
monitor. verify (Success(” TAKE_PICTURE”, 2))
monitor. verify (Success(”SEND TELEMETRY”, 42))
monitor.end()

Result

CommandMustSucceed property violated
Violating event number 3: Fail (STOP_DRIVING,1)
Error trace:

1=Command (STOP_DRIVING,1)

3=Fail (STOP_DRIVING,1)

SuccessHasAReason property violated

Violating event number 5: Success(SEND_TELEMETRY,42)
Error trace:

5=Success (SEND_TELEMETRY,42)

ScalaDoc documentation of API

(<[>] 2 fle:///Users /khavelun /Desktop/tracecontract/target/scala_2.8.0/doc/main/ api/index.htmi & Q- Google

class Monitor[Event] extends DataBase with Formulas(Event]
Fomuas Tris class of TraceContact.
Uveness:

property

000000000}

ut
SafetyEror class Requirements extends Monitor(Event] {
requirenent('CommandustSucceed) {

case COMMAND(x) =>

hot {
case SUCCESS (x) => ok

3

)

roquirenent ('CommandAtostonce) {
Case COMMAND (x) =>

state {
case COMMAND("x") => error

vent the type of events being monitored.
A e
ot

e
Type Members.
T
i el

BooleanOps extends AnyRef
Generated by impicit conversion from Booloan.
. oxtends AnyRef
Tho Else part of an If condition) Then formula Else formula2.
class oxtends AnyRef
Target ifimplicit conversion of evens.
class Pact extends AnyRef
Facts to bo addod to and romoved from tho fact databaso.

class Pormula extends AnyRet

an objoct o class that extends this class.
class IntOps extends AnyRet
Generated by impicit conversion from integer.

I
{
I
¢
H
£

type Trace = List(Event] .

ScalaDoc documentation of API

def eventuallyGt(n: Int)(formula: Formula): Formula
Eventually true after n steps.
def eventuallyLe(n: Int)(formula: Formula): Formula
Eventually true in maximally n steps.
def eventuallyLt(n: Int)(formula: Formula): Formula
Eventually true in less than n steps.
def factExists(pred: PartialPunction[Fact, Boolean]): Boolean
Tests whether a fact exists in the fact database, which satisfies a predicate.
def getMonitorResult: MonitorResult[Event]
Retums the result of a trace analysis for this monitor.
def getMonitors: List[Monitor[Event]]
Retuns the sub-monitors of a monitor.
def globally(formula: Formula): Formula
Globally true (an LTL formula).
def hot(m: Int, n: Int)(block: PartialPunction[Event, Formula]): Formula
A hot state waiting for an event to eventually maich a transition (required) between m and n steps.
def hot(block: PartialFunction[Event, Formula]): Formula

A hot state waiting for an event to eventually match a transition (required). The state remains active until the incoming event e matches the
k, that is, until block.isDefinedAt(e) == true, in which case the state formula evaluates to block(e).

Atthe end of the trace a hot state formula evaluates to False.

As an example, consider the following monitor, which checks the property: "a command x eventually should be followed by a success":

class Requirement extends Monitor[Event] {
require
case COMMAND(x) =>
hot {
case SUCCESS(x’) => ok

}

riial function representing the transitions leading out of the state.

the hot state formula.

definition classes: Formulas

def informal(name: Symbol)(explanation: String): Unit
Used to enter explanations of properties in informal language.
def informal(explanation: String): Unit
Used to enter explanations of properties in informal language.
def matches(predicate: PartialFunction[Event, Boolean]): Formula
Matches current event against a predicate.
def monitor(monitors: Monitor[Event]*): Unit
Adds monitors as sub-monitors to the current monitor.
def never(formula: Formula): Formula
Never true (an LTL-inspired formula).

LADEE mission

LADEE

Lunar Atmosphere and Dust Environment Explorer_ sl

verified
command
sequence

command

sequence
> flight rule checker

GUI interface to TraceContract (LADEE mission)

Flight Rule:

Rule Id
3

DWAIT uration W []
GRANU Proof of Concept Command Granularity <} Car)
NBURN Proof of Concept No Burn =]
'ORDER Proof of Concept Command Order ™
PRECO Proof of Concept Command Precondition ™
TRANS Proof of Concept Mode Transition ™

Initial State Files

rules.xml

Absolute Time Command Sequence (ATS) File:

ats_scnl1_Latf

Relative Time Command Sequence (RTS) File:

RTS File id
rts_cyclecomm_011.rtf 11
rts_rrentry_012.rtf 12
e rent 013 11 i
rts_smc_010.rf 10

SMAP mission

SMAP

mapping of soil moisture and its freeze/thaw state

Definition of parameterized monitors

class CommandSuccess(cmd: String, success: Boolean = true)
extends Monitor[Event] {
require {
case Command(‘cmd‘,number) =>
hot {
case Success(‘cmd’,'number') => success
case Fail (‘cmd’,'number') => Isuccess

¥
¥

monitor(new CommandSuccess("STOP"))

Summary

e 6 6 6 o o

TRACECONTRACT is an API.

Very expressive and convenient for programmers to use.
For this reason mainly it has been adopted by practitioners.
Has very simple implementation, which is easy to modify.
Change requests are easy to process.

It is, however, difficult to analyze a TRACECONTRACT specification
since it fundamentally is a Scala program - requires some form of
reflection or interaction with compiler.

It will not be suitable for non-Scala programmers.

	Introduction

