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3.5 million lines of C code



Terminology

model engineering = engineering models

model-based engineering

mode-based programming

models, specifications used in software engineering (formal methods)
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Runtime verification
Start with a system to monitor.
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Runtime verification
Instrument the system to record relevant events.
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Runtime verification
Provide a monitor.
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Runtime verification
Dispatch each received event to the monitor.
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Runtime verification
Compute a verdict for the trace received so far.
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Runtime verification
Possibly generate feedback to the system.
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Runtime verification
We might possibly have synthesized monitor from a property.
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External versus internal DSL

External DSL
I small language typically with very focused functionality
I specialized parser
I pros:

F can be optimally succinct
F “easy” to learn for person not familiar with programming language
F analyzable: a spec can be analyzed easily, visualized, etc.

Internal DSL
I an extension of an existing programming language
I typically an API - using base language’s features only
I pros:

F easier to develop and later adapt
F expressive, the programming language is never far away
F allows use of existing tools such as type checkers, IDEs, etc.
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External versus internal DSL

External DSL: LogScope
I small language typically with very focused functionality
I specialized parser
I pros:

F can be optimally succinct
F “easy” to learn for person not familiar with programming language
F analyzable: a spec can be analyzed easily, visualized, etc.

Internal DSL: TraceContract
I an extension of an existing programming language
I typically an API - using base language’s features only
I pros:

F easier to develop and later adapt
F expressive, the programming language is never far away
F allows use of existing tools such as type checkers, IDEs, etc.



LogScope V1 syntax



LogScope V2 syntax



Quote

Hemmingway & Hotchner, 1920ies:

If you are lucky enough to have lived in Paris as a young man, then
wherever you go for the rest of your life, it stays with you, for Paris is a
moveable feast.



Quote

Havelund, 2012:

If you are lucky enough to have explored VDM as a young man, then
wherever you go for the rest of your life, it stays with you, for VDM is a
moveable feast.



What is VDM?

Combination of imperative and functional programming (data types,
pattern matching, curried functions, lambda abstractions, side effects,
loops, exceptions, )

Design-by-contract: pre/post conditions + invariants

Predicate subtypes

Non-deterministic expressions (let x be such that P(x))

First order predicate logic as Boolean expressions: universal and
existential quantification

Sets, lists and maps as built-in data types

VDM++ added object orientation (Nico Plat et. al)



Chemical plant model in VDM versus Scala



Scala is a high-level unifying language

Object-oriented + functional programming features

Strongly typed with type inference

Script-like, semicolon inference

Sets, list, maps, iterators, comprehensions

Lots of libraries

Compiles to JVM

Lively growing community



Commands must succeed

We are analyzing log files containing information about commands
being issued, and their success and failure respectively.

Requirement CommandMustSucceed

An issued command must succeed, without a failure to occur before then.



Property in LogScope

For comparison we first show spec in the external DSL: LogScope.

a hot state must be exited before end of log (non-final state).

automaton CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
Fail (name,number) => error
Success(name,number) => ok
}
}



Property in LogScope

Using LogScope’s temporal logic layer.

pattern CommandMustSucceed:
Command(n,x) =>

[
! Fail (n,x),

Success(n,x),
]



Events in TraceContract

First we need to define the events we observe:
I commands being issued, each having a name and a number
I successes of commands
I failures of commands

Each event type sub-classes a type: Event

case-classes allow for pattern matching over objects of the class

abstract class Event

case class Command(name: String, nr: Int) extends Event
case class Success(name: String, nr : Int ) extends Event
case class Fail (name: String, nr : Int ) extends Event



Property in TraceContract - looks very similar
Uses partial functions: {case ... => ...} defined with pattern matching
as arguments to DSL functions (require and hot) defined in Monitor
class. RequireSuccess is a user-defined function representing a state.
A quoted name, such as ‘name‘ represents the value of that name.

class CommandMustSucceed extends Monitor[Event] {
always {
case Command(n, x) => RequireSuccess(n, x)
}

def RequireSuccess(name: String, number: Int) =
hot {
case Fail (‘name‘, ‘number‘) => error
case Success(‘name‘, ‘number‘) => ok
}

}



Property in TraceContract - looks very similar
Uses partial functions: {case ... => ...} defined with pattern matching
as arguments to DSL functions (require and hot) defined in Monitor
class. RequireSuccess is a user-defined function representing a state.
A quoted name, such as ‘name‘ represents the value of that name.

class CommandMustSucceed extends Monitor[Event] {
require {
case Command(n, x) => RequireSuccess(n, x)
}

def RequireSuccess(name: String, number: Int) =
hot {
case Fail (‘name‘, ‘number‘) => error
case Success(‘name‘, ‘number‘) => ok
}

}



Inlining the call of RequireSuccess(n,x)
Since RequireSuccess(n, x) is a function, the call of it can be inlined.
After all, this is “just” a program and standard program
transformation works.
The result is an interesting temporal logic like specification with an
un-named hot state.

class CommandMustSucceed extends Monitor[Event] {
require {
case Command(n, x) =>

hot {
case Fail (‘n ‘, ‘x ‘) => error
case Success(‘n ‘, ‘x ‘) => ok
}

}
}



Same property in LTL

TraceContract also offers future time linear temporal logic (LTL).

allowing to write events as formulas, negations, propositional
formulas, and temporal.

φ until ψ means: ψ must eventually hold, and until then φ must hold.

class CommandMustSucceed extends Monitor[Event] {
require {
case Command(n, x) =>

not( Fail (n, x)) until (Success(n, x))
}
}

note mix of Scala’s pattern matching (to catch arguments of
command) and LTL.
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Success of power commands

Requirement PowerCommandSuccess

Power commands must succeed within 10 seconds.



Property in LogScope

Defining and using Python predicates in LogScope.

{:
def within(t1,t2,max):
return (t2−t1) <= max

:}

pattern PowerCommands:
Command(n, x, t1) where {: n.startswith(”PWR”) :} =>

Success(n, x, t2) where {: within(t1,t2,10000) :}



Same property in TraceContract

TraceContract allows direct integration of code and formulas.

class PowerCommands extends Monitor[Event] {
def within(t1: Int , t2: Int , max: Int) = (t2−t1) <= max

require {
case Command(n, x, t1) if n. startsWith(”PWR”) =>

hot {
case Success(‘n ‘, ‘x ‘, t2) if within(t1,t2,10000) => ok
}

}
}



10 first commands must succeed

Requirement First10CommandsMustSucceed

The first 10 issued commands must succeed, without a failure to occur
before then.



Counting: first 10 commands must succeed

Code (here counting and testing on counter) can be mixed with logic.

That is: increase counter and return LTL formula.

class First10CommandsMustSucceed extends Monitor[Event] {
var count = 0
require {
case Command(n, x) if count < 10 =>

count = count + 1
not( Fail (n, x)) until (Success(n, x))

}
}



long sequence

Requirement CommandSequence

Whenever a flight software command is issued, there should follow a
dispatch and then exactly one success.
No dispatch failure before the dispatch, and
no failure between dispatch and success.



Property in LogScope

Using LogScope’s sequence operator.

pattern CommandSequence:
Command(n,x) =>

[
! DispatchFailure (n,x),

Dispatch(n,x),
! Fail (n,x),

Success(n,x),
! Success(n,x)

]



Same property in TraceContract
TraceContract allows mixing of states.

class CommandSequence extends Monitor[Event] {
require {
case Command(n, x) =>

hot {
case DispatchFailure (‘n ‘, ‘x ‘) => error
case Dispatch(‘n ‘, ‘x ‘) =>

hot {
case Fail (‘n ‘, ‘x ‘) => error
case Success(‘n ‘, ‘x ‘) =>

state {
case Success(‘n ‘, ‘x ‘) => error
}

}
}

}
}



Visualization of LogScope statemachine

Much more difficult to do with internal DSL such as TraceContract.



Property that we cannot write in LogScope
Antecedent (condition) containing multiple events.

pattern CommandSequenceAsCondition:
[

Command(n,x),
! DispatchFailure (n,x),

Dispatch(n,x)
]
=>
[

! Fail (n,x),
Success(n,x),

! Success(n,x)
]



However we can write it in TraceContract
TraceContract by just changing one of the state modifiers.

class CommandSequence extends Monitor[Event] {
require {
case Command(n, x) =>

state {
case DispatchFailure (‘n ‘, ‘x ‘) => error
case Dispatch(‘n ‘, ‘x ‘) =>

hot {
case Fail (‘n ‘, ‘x ‘) => error
case Success(‘n ‘, ‘x ‘) =>

state {
case Success(‘n ‘, ‘x ‘) => error
}

}
}

}
}



Some notes from a notebook - before TraceContract

TraceContract later offered this feature.



Alternation

Requirement AlternatingCommandSuccess

Commands and successes should alternate.



State machine solution

class AlternatingCommandSuccess extends Monitor[Event] {
property(s1)

def s1: Formula =
state {
case Command(n, x) => s2(n, x)
case => error
}

def s2(name: String, number: Int) =
state {
case Success(‘name‘, ‘number‘) => s1
case => error
}

}



State machine solution - with next-states

class AlternatingCommandSuccess extends Monitor[Event] {
property(s1)

def s1: Formula =
next {
case Command(n, x) => s2(n, x)
}

def s2(name: String, number: Int) =
next {
case Success(‘name‘, ‘number‘) => s1
}

}



A past time property

Properties so far have been future time properties: from some event,
the future behavior must satisfy some property.

The following requirement refers to the past of some event (success).

Requirement SuccessHasAReason

A success must be caused by a previously issued command.



TraceContract offers limited rule-based programming
State logic and LTL cannot express this property.

TraceContract offers a limited form of rule-based programming,
were a fact f (sub-classing class Fact) can be queried (f ?), created
(f +), and deleted (f−). The result in the latter two cases is True.

class SuccessHasAReason extends Monitor[Event] {
case class Commanded(name: String, nr: Int) extends Fact

require {
case Command(n, x) => Commanded(n, x) +
case Success(n, x) =>

if (Commanded(n, x) ?)
Commanded(n, x) −

else
error

}
}
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The ?- abbreviation

We can we make this monitor simpler by using test-and-set: f ?−, for
a given fact f , meaning: return true iff. the fact f is recorded, delete
the fact in any case.

class SuccessHasAReason extends Monitor[Event] {
case class Commanded(name: String, nr: Int) extends Fact

require {
case Command(n, x) => Commanded(n, x) +
case Success(n, x) => Commanded(n, x) ?−
}
}



Making monitors of monitors

We can create a new monitor which includes other monitors as
sub-monitors. Useful for organizing properties.

The semantics is the obvious one of conjunction: all monitors will get
checked individually.

class CommandRequirements extends Monitor[Event] {
monitor(
new CommandMustSucceed,
new MaxOneSuccess,
new SuccessHasAReason)

}



Analyzing a complete trace (log analysis)
To verify a trace: first create it, then instantiate monitor, and call
verify method on monitor with trace as argument.

object TraceAnalysis extends Application {
val trace : List [Event] =

List (
Command(”STOP DRIVING”, 1),
Command(”TAKE PICTURE”, 2),
Fail (”STOP DRIVING”, 1),
Success(”TAKE PICTURE”, 2),
Success(”SEND TELEMETRY”, 42))

val monitor = new CommandRequirements
monitor. verify ( trace)
}



Alternatively: analyzing event by event (online monitoring)

To verify a sequence of events: instantiate monitor, and call verify
method on monitor for each event, and call end() if event flow
terminates.

object TraceAnalysis extends Application {
val monitor = new CommandRequirements
monitor. verify (Command(”STOP DRIVING”, 1))
monitor. verify (Command(”TAKE PICTURE”, 2))
monitor. verify ( Fail (”STOP DRIVING”, 1))
monitor. verify (Success(”TAKE PICTURE”, 2))
monitor. verify (Success(”SEND TELEMETRY”, 42))
monitor.end()
}



Result

CommandMustSucceed property violated

Violating event number 3: Fail(STOP_DRIVING,1)

Error trace:

1=Command(STOP_DRIVING,1)

3=Fail(STOP_DRIVING,1)

SuccessHasAReason property violated

Violating event number 5: Success(SEND_TELEMETRY,42)

Error trace:

5=Success(SEND_TELEMETRY,42)



ScalaDoc documentation of API



ScalaDoc documentation of API



LADEE mission



GUI interface to TraceContract (LADEE mission)



SMAP mission



Definition of parameterized monitors

class CommandSuccess(cmd: String, success: Boolean = true)
extends Monitor[Event] {

require {
case Command(‘cmd‘,number) =>

hot {
case Success(‘cmd‘,‘number‘) => success
case Fail (‘ cmd‘,‘number‘) => !success
}

}
}

monitor(new CommandSuccess(”STOP”))



Summary

TraceContract is an API.

Very expressive and convenient for programmers to use.

For this reason mainly it has been adopted by practitioners.

Has very simple implementation, which is easy to modify.

Change requests are easy to process.

It is, however, difficult to analyze a TraceContract specification
since it fundamentally is a Scala program - requires some form of
reflection or interaction with compiler.

It will not be suitable for non-Scala programmers.
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