LCCC workshop 2012

Constraint satisfaction methods in embedded system design

Krzysztof Kuchcinski Dept. of Computer Science, Lund University, Sweden

Motivation an Example

Advanced Example- Sub-graph Isomorphism

2 CP Basics

3 Advanced Example- Sub-graph Isomorphism

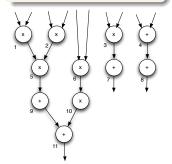
4 Summary and Conclusions

Why constraints?

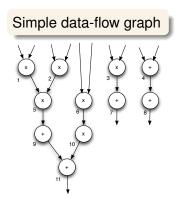
- Examples of combinatorial optimization problems in embedded systems
 - Scheduling, allocation and assignment,
 - Partitioning,
 - Memory and register assignment,
 - Instruction selection.
- Different constraints:
 - timing,
 - resource,
 - power consumption, etc.
- Constraint programming over finite domain
 – combinatorial optimization problems!!!
- Constraint programming offers a *unified* approach to model and solve problems with *heterogeneous* constraints.

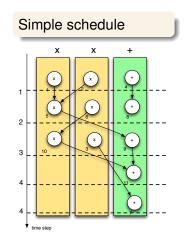
Scheduling example

Simple data-flow graph

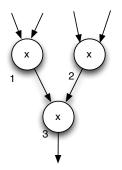


Scheduling example

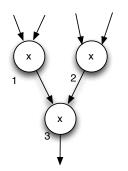




Scheduling Constraints



Scheduling Constraints

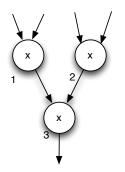


Variables

Operation start $t_1 :: \{0..10\}, t_2 :: \{0..10\}, t_3 :: \{0..10\}$

Assigned resource $r_1 :: \{1..2\}, r_2 :: \{1..2\}, r_3 :: \{1..2\}$

Scheduling Constraints



Variables

Operation start $t_1 :: \{0..10\}, t_2 :: \{0..10\}, t_3 :: \{0..10\}$

Assigned resource $r_1 :: \{1..2\}, r_2 :: \{1..2\}, r_3 :: \{1..2\}$

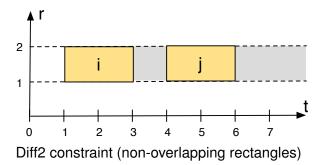
Constraints

Precedence constraints $t_1 + d_1 \leq t_2 \land t_2 + d_2 \leq t_3 \land$

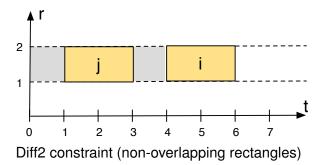
Resource constraints $(t_1 + d_1 \le t_2 \lor t_2 + d_2 \le t_1 \lor r_1 \ne r_2)$

 $\forall i, j \text{ where } i < j : t_i + d_i \leq t_j \lor t_j + d_j \leq t_i \lor r_i \neq r_j$

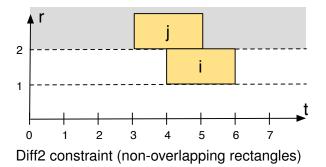
$$\forall i, j \text{ where } i < j : t_i + d_i \leq t_j \lor t_j + d_j \leq t_i \lor r_i \neq r_j$$



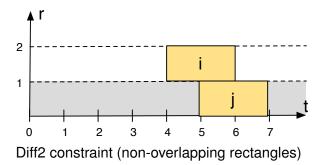
$$\forall i, j \text{ where } i < j : t_i + d_i \leq t_j \lor t_j + d_j \leq t_i \lor r_i \neq r_j$$



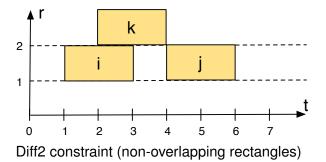
$$\forall i, j \text{ where } i < j : t_i + d_i \leq t_j \lor t_j + d_j \leq t_i \lor r_i \neq r_j$$



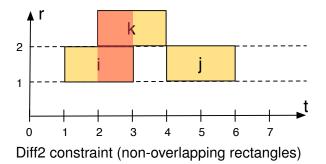
$$\forall i, j \text{ where } i < j : t_i + d_i \leq t_j \lor t_j + d_j \leq t_i \lor r_i \neq r_j$$



$$\forall i, j \text{ where } i < j : t_i + d_i \leq t_j \lor t_j + d_j \leq t_i \lor r_i \neq r_j$$



$$\forall i, j \text{ where } i < j : t_i + d_i \leq t_j \lor t_j + d_j \leq t_i \lor r_i \neq r_j$$



Final Model

```
array[1..n] of var 0..100 : t;
array[1..n] of var 1..2 : r;
```

% precedence constraints constraint

```
\begin{array}{l} t[1] + 2 = < t[6] / \ t[2] + 2 = < t[6] / \ t[3] + 2 = < t[7] / \\ t[4] + 2 = < t[8] / \ t[5] + 1 = < t[9] / \ t[6] + 2 = < t[10] / \\ t[7] + 2 = < t[11] / \ t[10] + 1 = < t[11]; \end{array}
```

constraint

```
% resource constraints for adders
diff2([[t[5],r[5],1,1], [t[8],r[8],1,1], [t[9],r[9],1,1],
        [t[10],r[10],1,1], [t[11],r[11],1,1] ])
/\
% resource constraints for multipliers
diff2([[t[1],r[1],2,1], [t[2],r[2],2,1], [t[3],r[3],2,1],
        [t[4],r[4],2,1], [t[6],r[6],2,1], [t[7],r[7],2,1]]);
```


Model Advantages

- Separation of a model and solving method
- Time-constrained and resource-constrained scheduling
- Easy to add new constraints
- Non-linear constraints
- Combination of consistency algorithms (e.g., diff2 and cumulative constraints)
- Standard and heuristic methods for solving the model

3 Advanced Example- Sub-graph Isomorphism

CP basics

- Finite domain variables, e.g., t :: 0..10
- Constraints; defined by their consistency methods (propagators)
- Primitive constraints
 - a+b < c, x ⋅ y = z, A ∪ B = C, etc.
 - bounds and domain consistency
- Global constraints
 - diff2, alldifferent, etc.
 - can be decomposed to primitive constraints BUT
 - specialized algorithms from operation research, graph theory, computational geometry, etc. are more efficient

Propagators

Propagator for x + y = z (bounds consistency)

- x in $\{\min(z) \max(y) .. \max(z) \min(y)\}$
- $y \text{ in } \{\min(z) \max(x) .. \max(z) \min(x)\}$
- *z* in $\{\min(x) + \min(y) .. \max(x) + \max(y)\}$

Propagators

Propagator for x + y = z (bounds consistency)

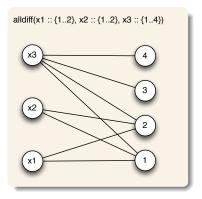
- *x* in $\{\min(z) \max(y) .. \max(z) \min(y)\}$
- $y \text{ in } \{\min(z) \max(x) .. \max(z) \min(x)\}$
- *z* in $\{\min(x) + \min(y) .. \max(x) + \max(y)\}$

Example

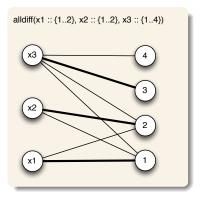
```
x :: \{1..10\}, y :: \{1..10\} \text{ and } z :: \{1..10\}
yields
x :: \{1..9\}, y :: \{1..9\} \text{ and } z :: \{2..10\}.
```


- alldifferent, cumulative, table, etc.
- geometrical constraints: diff2, geost,
- combinatorial problems: binpacking, knapsack, network flow, etc.
- graph constraints: (sub-)graph isomorphism, clique, Hamiltonian path, simple path, connected components.

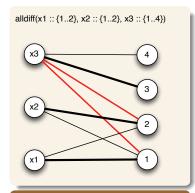
- alldifferent, cumulative, table, etc.
- geometrical constraints: diff2, geost,
- combinatorial problems: binpacking, knapsack, network flow, etc.
- *graph constraints*: (sub-)graph isomorphism, clique, Hamiltonian path, simple path, connected components.



- alldifferent, cumulative, table, etc.
- geometrical constraints: diff2, geost,
- combinatorial problems: binpacking, knapsack, network flow, etc.
- *graph constraints*: (sub-)graph isomorphism, clique, Hamiltonian path, simple path, connected components.



- alldifferent, cumulative, table, etc.
- geometrical constraints: diff2, geost,
- combinatorial problems: binpacking, knapsack, network flow, etc.
- *graph constraints*: (sub-)graph isomorphism, clique, Hamiltonian path, simple path, connected components.

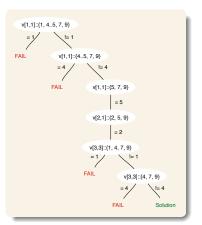


Berge, 1973

An edge belongs to a maximum matching iff for some maximum matching, it belongs to either an even alternating path which begins at a free node, or to an even alternating cycle.

Solving

- Systematically assign values to variables and check if the problem is still consistent
- Implemented usually as depth-first-search
- Other methods can be used instead of assigning values, i.e., constraints on tasks ordering
- Heuristics can be incorporated



2 CP Basics

Advanced Example- Sub-graph Isomorphism

Summary and Conclusions

Subgraph Isomorphism Constraint

Definition (Subgraph isomorphism)

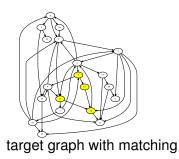
Target $G_t = (N_t, E_t)$ and pattern $G_p = (N_p, E_p)$ graphs are subgraph isomorphic iff there exist an injective function $f : N_p \to N_t$ respecting $(u, v) \in E_p \Leftrightarrow (f(u), f(v)) \in E_t$.

Subgraph Isomorphism Constraint

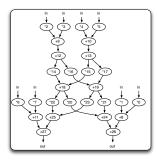
Definition (Subgraph isomorphism)

Target $G_t = (N_t, E_t)$ and pattern $G_p = (N_p, E_p)$ graphs are subgraph isomorphic iff there exist an injective function $f : N_p \to N_t$ respecting $(u, v) \in E_p \Leftrightarrow (f(u), f(v)) \in E_t$.

pattern graph



Instruction Identification and Selection

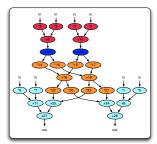


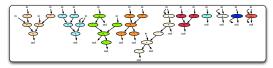
Computational patterns

Data-flow graph

• Computational patterns - connected components of the graph

Instruction Identification and Selection (cont d





Computational patterns

Covered data-flow graph

• Find sub-graph isomorphism that fulfills additional constraints (e.g., shortest schedule)

3 Advanced Example- Sub-graph Isomorphism

Our Solver

Java Constraint Programming

- constraint programming paradigm implemented in Java.
- provides different type of constraints
 - primitive constraints, such as arithmetical constraints (+, *, div, mod, etc.), equality (=) and inequalities (<, >, =<, >=, !=).
 - logical, reified and conditional constraints
 - global constraints.
 - set constraints, such as =, \bigcup , \bigcap .
 - stochastic variables and constraints.
- High-level language, minizinc, interface
- http://www.jacop.eu
- http://sourceforge.net/projects/jacop-solver/

Conclusions

- Easy way of modeling problems with heterogeneous constraints
- Easy to extend the problem with new constraints
- Can handle non-linear constraints
- Combination of different algorithms through global constraints
- Separation between modeling and solving
- Both complete and heuristic methods can be used for finding solutions