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Why constraints?

Examples of combinatorial optimization problems in
embedded systems

Scheduling, allocation and assignment,
Partitioning,
Memory and register assignment,
Instruction selection.

Different constraints:
timing,
resource,
power consumption, etc.

Constraint programming over finite domain– combinatorial
optimization problems!!!
Constraint programming offers a unified approach to model
and solve problems with heterogeneous constraints.
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Scheduling example

Simple data-flow graph
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Scheduling Constraints
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Variables
Operation start
t1 :: {0..10}, t2 :: {0..10}, t3 :: {0..10}

Assigned resource
r1 :: {1..2}, r2 :: {1..2}, r3 :: {1..2}

Constraints
Precedence constraints
t1 + d1 ≤ t2∧
t2 + d2 ≤ t3∧

Resource constraints
(t1 + d1 ≤ t2 ∨ t2 + d2 ≤ t1 ∨ r1 6= r2)
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Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj
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Final Model

array[1..n] of var 0..100 : t;
array[1..n] of var 1..2 : r;

% precedence constraints
constraint

t[1] + 2 =< t[6] /\ t[2] + 2 =< t[6] /\ t[3] + 2 =< t[7] /\
t[4] + 2 =< t[8] /\ t[5] + 1 =< t[9] /\ t[6] + 2 =< t[10] /\
t[7] + 2 =< t[11] /\ t[10] + 1 =< t[11];

constraint
% resource constraints for adders
diff2([[t[5],r[5],1,1], [t[8],r[8],1,1], [t[9],r[9],1,1],

[t[10],r[10],1,1], [t[11],r[11],1,1] ])
/\
% resource constraints for multipliers
diff2([[t[1],r[1],2,1], [t[2],r[2],2,1], [t[3],r[3],2,1],

[t[4],r[4],2,1], [t[6],r[6],2,1], [t[7],r[7],2,1]]);
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Model Advantages

Separation of a model and solving method
Time-constrained and resource-constrained scheduling
Easy to add new constraints
Non-linear constraints
Combination of consistency algorithms (e.g., diff2 and
cumulative constraints)
Standard and heuristic methods for solving the model
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CP basics

Finite domain variables, e.g., t :: 0..10
Constraints; defined by their consistency methods
(propagators)
Primitive constraints

a + b < c, x · y = z, A ∪ B = C, etc.
bounds and domain consistency

Global constraints
diff2, alldifferent, etc.
can be decomposed to primitive constraints BUT
specialized algorithms from operation research, graph theory,
computational geometry, etc. are more efficient
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Propagators

Propagator for x + y = z (bounds consistency)

x in {min(z)−max(y) .. max(z)−min(y)}
y in {min(z)−max(x) .. max(z)−min(x)}
z in {min(x) + min(y) .. max(x) + max(y)}

Example
x :: {1..10}, y :: {1..10} and z :: {1..10}
yields
x :: {1..9}, y :: {1..9} and z :: {2..10}.
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Global Constraints

alldifferent, cumulative, table, etc.
geometrical constraints: diff2,
geost,
combinatorial problems:
binpacking, knapsack, network
flow, etc.
graph constraints: (sub-)graph
isomorphism, clique, Hamiltonian
path, simple path, connected
components.
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Berge, 1973

An edge belongs to a maximum matching iff for
some maximum matching, it belongs to either
an even alternating path which begins at a free
node, or to an even alternating cycle.
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Solving

Systematically assign values
to variables and check if the
problem is still consistent
Implemented usually as
depth-first-search
Other methods can be used
instead of assigning values,
i.e., constraints on tasks
ordering
Heuristics can be incorporated

 = 1  != 1

 = 4  != 4

 = 5

 = 2

 = 1  != 1

 = 4  != 4

v[1,1]::{1, 4..5, 7, 9}

v[1,1]::{4..5, 7, 9}

FAIL v[1,1]::{5, 7, 9}

v[2,1]::{2, 5, 9}

v[3,3]::{1, 4, 7, 9}

FAIL v[3,3]::{4, 7, 9}

FAIL Solution

FAIL
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Subgraph Isomorphism Constraint

Definition (Subgraph isomorphism)
Target Gt = (Nt ,Et) and pattern Gp = (Np,Ep) graphs are
subgraph isomorphic iff there exist an injective function
f : Np → Nt respecting (u, v) ∈ Ep ⇔ (f (u), f (v)) ∈ Et .

0

1

2

3

pattern graph

0

16

7

4

2

8

15

19

1

3

10

5 13

12

6

14

11

9 17 18

target graph with matching

Krzysztof Kuchcinski 16(21)



LCCC workshop 2012

Subgraph Isomorphism Constraint

Definition (Subgraph isomorphism)
Target Gt = (Nt ,Et) and pattern Gp = (Np,Ep) graphs are
subgraph isomorphic iff there exist an injective function
f : Np → Nt respecting (u, v) ∈ Ep ⇔ (f (u), f (v)) ∈ Et .

0

1

2

3

pattern graph

0

16

7

4

2

8

15

19

1

3

10

5 13

12

6

14

11

9 17 18

target graph with matching
Krzysztof Kuchcinski 16(21)



LCCC workshop 2012

Instruction Identification and Selection
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Computational patterns

Computational patterns - connected components of the graph
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Instruction Identification and Selection (cont’d)
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Computational patterns

Find sub-graph isomorphism that fulfills additional constraints
(e.g., shortest schedule)

Krzysztof Kuchcinski 18(21)



LCCC workshop 2012

Outline

1 Motivation an Example

2 CP Basics

3 Advanced Example- Sub-graph Isomorphism

4 Summary and Conclusions

Krzysztof Kuchcinski 19(21)



LCCC workshop 2012

Our Solver

Java Constraint Programming

constraint programming paradigm implemented in Java.
provides different type of constraints

primitive constraints, such as arithmetical constraints (+, *, div,
mod, etc.), equality (=) and inequalities (<, >, =<, >=, !=).
logical, reified and conditional constraints
global constraints.
set constraints, such as =,

⋃
,
⋂

.
stochastic variables and constraints.

High-level language, minizinc, interface
http://www.jacop.eu

http://sourceforge.net/projects/jacop-solver/
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Conclusions

Easy way of modeling problems with heterogeneous
constraints
Easy to extend the problem with new constraints
Can handle non-linear constraints
Combination of different algorithms through global constraints
Separation between modeling and solving
Both complete and heuristic methods can be used for finding
solutions
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