
LCCC workshop 2012

Constraint satisfaction methods
in embedded system design

Krzysztof Kuchcinski

Dept. of Computer Science,
Lund University, Sweden

Krzysztof Kuchcinski 1(21)

LCCC workshop 2012

Outline

1 Motivation an Example

2 CP Basics

3 Advanced Example- Sub-graph Isomorphism

4 Summary and Conclusions

Krzysztof Kuchcinski 2(21)

LCCC workshop 2012

Outline

1 Motivation an Example

2 CP Basics

3 Advanced Example- Sub-graph Isomorphism

4 Summary and Conclusions

Krzysztof Kuchcinski 3(21)

LCCC workshop 2012

Why constraints?

Examples of combinatorial optimization problems in
embedded systems

Scheduling, allocation and assignment,
Partitioning,
Memory and register assignment,
Instruction selection.

Different constraints:
timing,
resource,
power consumption, etc.

Constraint programming over finite domain– combinatorial
optimization problems!!!
Constraint programming offers a unified approach to model
and solve problems with heterogeneous constraints.

Krzysztof Kuchcinski 4(21)

LCCC workshop 2012

Scheduling example

Simple data-flow graph

x

x

x

x

x

x

+

+

+

+

+

1 2 3 4

5 6 7 8

9 10

11

Simple schedule

x

x

x

x

x x

+

+

+

+

+

1 2

3

4

5 6

7

8

910

11

x x +

time step

1

2

3

4

4

Krzysztof Kuchcinski 5(21)

LCCC workshop 2012

Scheduling example

Simple data-flow graph

x

x

x

x

x

x

+

+

+

+

+

1 2 3 4

5 6 7 8

9 10

11

Simple schedule

x

x

x

x

x x

+

+

+

+

+

1 2

3

4

5 6

7

8

910

11

x x +

time step

1

2

3

4

4

Krzysztof Kuchcinski 5(21)

LCCC workshop 2012

Scheduling Constraints

x

x

x

1 2

3

Variables
Operation start
t1 :: {0..10}, t2 :: {0..10}, t3 :: {0..10}

Assigned resource
r1 :: {1..2}, r2 :: {1..2}, r3 :: {1..2}

Constraints
Precedence constraints
t1 + d1 ≤ t2∧
t2 + d2 ≤ t3∧

Resource constraints
(t1 + d1 ≤ t2 ∨ t2 + d2 ≤ t1 ∨ r1 6= r2)

Krzysztof Kuchcinski 6(21)

LCCC workshop 2012

Scheduling Constraints

x

x

x

1 2

3

Variables
Operation start
t1 :: {0..10}, t2 :: {0..10}, t3 :: {0..10}

Assigned resource
r1 :: {1..2}, r2 :: {1..2}, r3 :: {1..2}

Constraints
Precedence constraints
t1 + d1 ≤ t2∧
t2 + d2 ≤ t3∧

Resource constraints
(t1 + d1 ≤ t2 ∨ t2 + d2 ≤ t1 ∨ r1 6= r2)

Krzysztof Kuchcinski 6(21)

LCCC workshop 2012

Scheduling Constraints

x

x

x

1 2

3

Variables
Operation start
t1 :: {0..10}, t2 :: {0..10}, t3 :: {0..10}

Assigned resource
r1 :: {1..2}, r2 :: {1..2}, r3 :: {1..2}

Constraints
Precedence constraints
t1 + d1 ≤ t2∧
t2 + d2 ≤ t3∧

Resource constraints
(t1 + d1 ≤ t2 ∨ t2 + d2 ≤ t1 ∨ r1 6= r2)

Krzysztof Kuchcinski 6(21)

LCCC workshop 2012

Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj

Krzysztof Kuchcinski 7(21)

LCCC workshop 2012

Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj

0 1 2 3 4 5 6 7

i
1

2
j

t

r

Diff2 constraint (non-overlapping rectangles)

Krzysztof Kuchcinski 7(21)

LCCC workshop 2012

Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj

0 1 2 3 4 5 6 7

j
1

2
i

t

r

Diff2 constraint (non-overlapping rectangles)

Krzysztof Kuchcinski 7(21)

LCCC workshop 2012

Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj

0 1 2 3 4 5 6 7

j

1

2
i

t

r

Diff2 constraint (non-overlapping rectangles)

Krzysztof Kuchcinski 7(21)

LCCC workshop 2012

Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj

0 1 2 3 4 5 6 7

j
1

2
i

t

r

Diff2 constraint (non-overlapping rectangles)

Krzysztof Kuchcinski 7(21)

LCCC workshop 2012

Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj

0 1 2 3 4 5 6 7

i
1

2
j

t

r
k

Diff2 constraint (non-overlapping rectangles)

Krzysztof Kuchcinski 7(21)

LCCC workshop 2012

Global Constraints

∀i , j where i < j : ti + di ≤ tj ∨ tj + dj ≤ ti ∨ ri 6= rj

0 1 2 3 4 5 6 7

i
1

2
j

t

r
k

Diff2 constraint (non-overlapping rectangles)

Krzysztof Kuchcinski 7(21)

LCCC workshop 2012

Final Model

array[1..n] of var 0..100 : t;
array[1..n] of var 1..2 : r;

% precedence constraints
constraint

t[1] + 2 =< t[6] /\ t[2] + 2 =< t[6] /\ t[3] + 2 =< t[7] /\
t[4] + 2 =< t[8] /\ t[5] + 1 =< t[9] /\ t[6] + 2 =< t[10] /\
t[7] + 2 =< t[11] /\ t[10] + 1 =< t[11];

constraint
% resource constraints for adders
diff2([[t[5],r[5],1,1], [t[8],r[8],1,1], [t[9],r[9],1,1],

[t[10],r[10],1,1], [t[11],r[11],1,1]])
/\
% resource constraints for multipliers
diff2([[t[1],r[1],2,1], [t[2],r[2],2,1], [t[3],r[3],2,1],

[t[4],r[4],2,1], [t[6],r[6],2,1], [t[7],r[7],2,1]]);

Krzysztof Kuchcinski 8(21)

LCCC workshop 2012

Model Advantages

Separation of a model and solving method
Time-constrained and resource-constrained scheduling
Easy to add new constraints
Non-linear constraints
Combination of consistency algorithms (e.g., diff2 and
cumulative constraints)
Standard and heuristic methods for solving the model

Krzysztof Kuchcinski 9(21)

LCCC workshop 2012

Outline

1 Motivation an Example

2 CP Basics

3 Advanced Example- Sub-graph Isomorphism

4 Summary and Conclusions

Krzysztof Kuchcinski 10(21)

LCCC workshop 2012

CP basics

Finite domain variables, e.g., t :: 0..10
Constraints; defined by their consistency methods
(propagators)
Primitive constraints

a + b < c, x · y = z, A ∪ B = C, etc.
bounds and domain consistency

Global constraints
diff2, alldifferent, etc.
can be decomposed to primitive constraints BUT
specialized algorithms from operation research, graph theory,
computational geometry, etc. are more efficient

Krzysztof Kuchcinski 11(21)

LCCC workshop 2012

Propagators

Propagator for x + y = z (bounds consistency)

x in {min(z)−max(y) .. max(z)−min(y)}
y in {min(z)−max(x) .. max(z)−min(x)}
z in {min(x) + min(y) .. max(x) + max(y)}

Example
x :: {1..10}, y :: {1..10} and z :: {1..10}
yields
x :: {1..9}, y :: {1..9} and z :: {2..10}.

Krzysztof Kuchcinski 12(21)

LCCC workshop 2012

Propagators

Propagator for x + y = z (bounds consistency)

x in {min(z)−max(y) .. max(z)−min(y)}
y in {min(z)−max(x) .. max(z)−min(x)}
z in {min(x) + min(y) .. max(x) + max(y)}

Example
x :: {1..10}, y :: {1..10} and z :: {1..10}
yields
x :: {1..9}, y :: {1..9} and z :: {2..10}.

Krzysztof Kuchcinski 12(21)

LCCC workshop 2012

Global Constraints

alldifferent, cumulative, table, etc.
geometrical constraints: diff2,
geost,
combinatorial problems:
binpacking, knapsack, network
flow, etc.
graph constraints: (sub-)graph
isomorphism, clique, Hamiltonian
path, simple path, connected
components.

Krzysztof Kuchcinski 13(21)

LCCC workshop 2012

Global Constraints

alldifferent, cumulative, table, etc.
geometrical constraints: diff2,
geost,
combinatorial problems:
binpacking, knapsack, network
flow, etc.
graph constraints: (sub-)graph
isomorphism, clique, Hamiltonian
path, simple path, connected
components.

alldiff(x1 :: {1..2}, x2 :: {1..2}, x3 :: {1..4})

x3

x2

x1

4

3

2

1

Krzysztof Kuchcinski 13(21)

LCCC workshop 2012

Global Constraints

alldifferent, cumulative, table, etc.
geometrical constraints: diff2,
geost,
combinatorial problems:
binpacking, knapsack, network
flow, etc.
graph constraints: (sub-)graph
isomorphism, clique, Hamiltonian
path, simple path, connected
components.

alldiff(x1 :: {1..2}, x2 :: {1..2}, x3 :: {1..4})

x3

x2

x1

4

3

2

1

Krzysztof Kuchcinski 13(21)

LCCC workshop 2012

Global Constraints

alldifferent, cumulative, table, etc.
geometrical constraints: diff2,
geost,
combinatorial problems:
binpacking, knapsack, network
flow, etc.
graph constraints: (sub-)graph
isomorphism, clique, Hamiltonian
path, simple path, connected
components.

alldiff(x1 :: {1..2}, x2 :: {1..2}, x3 :: {1..4})

x3

x2

x1

4

3

2

1

Berge, 1973

An edge belongs to a maximum matching iff for
some maximum matching, it belongs to either
an even alternating path which begins at a free
node, or to an even alternating cycle.

Krzysztof Kuchcinski 13(21)

LCCC workshop 2012

Solving

Systematically assign values
to variables and check if the
problem is still consistent
Implemented usually as
depth-first-search
Other methods can be used
instead of assigning values,
i.e., constraints on tasks
ordering
Heuristics can be incorporated

 = 1 != 1

 = 4 != 4

 = 5

 = 2

 = 1 != 1

 = 4 != 4

v[1,1]::{1, 4..5, 7, 9}

v[1,1]::{4..5, 7, 9}

FAIL v[1,1]::{5, 7, 9}

v[2,1]::{2, 5, 9}

v[3,3]::{1, 4, 7, 9}

FAIL v[3,3]::{4, 7, 9}

FAIL Solution

FAIL

Krzysztof Kuchcinski 14(21)

LCCC workshop 2012

Outline

1 Motivation an Example

2 CP Basics

3 Advanced Example- Sub-graph Isomorphism

4 Summary and Conclusions

Krzysztof Kuchcinski 15(21)

LCCC workshop 2012

Subgraph Isomorphism Constraint

Definition (Subgraph isomorphism)
Target Gt = (Nt ,Et) and pattern Gp = (Np,Ep) graphs are
subgraph isomorphic iff there exist an injective function
f : Np → Nt respecting (u, v) ∈ Ep ⇔ (f (u), f (v)) ∈ Et .

0

1

2

3

pattern graph

0

16

7

4

2

8

15

19

1

3

10

5 13

12

6

14

11

9 17 18

target graph with matching

Krzysztof Kuchcinski 16(21)

LCCC workshop 2012

Subgraph Isomorphism Constraint

Definition (Subgraph isomorphism)
Target Gt = (Nt ,Et) and pattern Gp = (Np,Ep) graphs are
subgraph isomorphic iff there exist an injective function
f : Np → Nt respecting (u, v) ∈ Ep ⇔ (f (u), f (v)) ∈ Et .

0

1

2

3

pattern graph

0

16

7

4

2

8

15

19

1

3

10

5 13

12

6

14

11

9 17 18

target graph with matching
Krzysztof Kuchcinski 16(21)

LCCC workshop 2012

Instruction Identification and Selection

*0

in

+8

*1

in

*2

in

+9

*3

in

*4

in

+10

*5

in

*6

in

+11

*7

in

+26

+12 +13

+27

*14 *16 *17*15

+18 +19

*22 *20 *21*23

+24+25

outout

Data-flow graph

+

out

+

in *

in

+

in *

in

+

out

+

*

in

+

in*

in

+

out *

*

out

*

in+

out

in

+

* *

*

in

out

*

in

out +

* out

in *

out

+

out

+

in

*

+

in

out

*

in

*

out

in

+

out

in

+

out

in

+

out

in

Computational patterns

Computational patterns - connected components of the graph

Krzysztof Kuchcinski 17(21)

LCCC workshop 2012

Instruction Identification and Selection (cont’d)

*0

+8

in

*1

in

*2

+9

in

*3

in

*4

+10

in

*5

in

*6

+11

in

*7

in

+26

+12 +13

+27

*14 *16 *15 *17

+18 +19

*22 *20 *23 *21

+24+25

outout

Covered data-flow
graph

+

out

+

in *

in

+

in *

in

+

out

+

*

in

+

in*

in

+

out *

*

out

*

in+

out

in

+

* *

*

in

out

*

in

out +

* out

in *

out

+

out

+

in

*

+

in

out

*

in

*

out

in

+

out

in

+

out

in

+

out

in

Computational patterns

Find sub-graph isomorphism that fulfills additional constraints
(e.g., shortest schedule)

Krzysztof Kuchcinski 18(21)

LCCC workshop 2012

Outline

1 Motivation an Example

2 CP Basics

3 Advanced Example- Sub-graph Isomorphism

4 Summary and Conclusions

Krzysztof Kuchcinski 19(21)

LCCC workshop 2012

Our Solver

Java Constraint Programming

constraint programming paradigm implemented in Java.
provides different type of constraints

primitive constraints, such as arithmetical constraints (+, *, div,
mod, etc.), equality (=) and inequalities (<, >, =<, >=, !=).
logical, reified and conditional constraints
global constraints.
set constraints, such as =,

⋃
,
⋂

.
stochastic variables and constraints.

High-level language, minizinc, interface
http://www.jacop.eu

http://sourceforge.net/projects/jacop-solver/

Krzysztof Kuchcinski 20(21)

http://www.jacop.eu
http://sourceforge.net/projects/jacop-solver/

LCCC workshop 2012

Conclusions

Easy way of modeling problems with heterogeneous
constraints
Easy to extend the problem with new constraints
Can handle non-linear constraints
Combination of different algorithms through global constraints
Separation between modeling and solving
Both complete and heuristic methods can be used for finding
solutions

Krzysztof Kuchcinski 21(21)

	Motivation an Example
	CP Basics
	Advanced Example- Sub-graph Isomorphism
	Summary and Conclusions

