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What is the momentum of the middle ball as a function of time? 
 p(t) = mv(t)
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What is the momentum of the middle ball as a function of time? 
 
It might seem: 

p(t) = mv(t)

v(t) = 0 ) p(t) = 0
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But no, it is: 
 
 
where ti is the time of collision 

v(t) =
⇢

K, t = ti
0 otherwise



Lee, Berkeley  5 

Since position is the integral 
of velocity, and the integral of 
v is zero, the ball does not 
move. 

v(t) =
⇢

K, t = ti
0 otherwise

K 

ti 
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v(t) =
⇢

K, t = ti
0 otherwise A discrete representation of 

this signal with samples is 
inadequate. K 

ti 
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Samples yield discrete signals 
A signal   is sampled at tags  

t t0 t1 t2 t3 ts ... 

A signal s is discrete if there is an order embedding from 
its tag set π ( s )  (the tags for which it is defined and not 
absent) to the natural numbers (under their usual order). 
Note: Benveniste et al. use a different (and less useful?) notion of “discrete.”  
 

π (s) = {t0, t1,...}⊂ T

s :T→D
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v(t) =
⇢

K, t = ti
0 otherwise No discrete subset of real-

valued times is adequate to 
unambiguously represent this 
signal. 

K 

ti 
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v(t) =
⇢

K, t = ti
0 otherwise There is no semantic 

distinction between a discrete 
event and a rapidly varying 
continuous signal. 

K 

ti 
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Simulink/Stateflow cannot accurately model such events. 

Transient States 

The simulator engine of Simulink introduces 
a non-zero delay to consecutive transitions.  

In Simulink, a signal can only have one value at a given time. Hence 
Simulink introduces solver-dependent behavior. 
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Ptolemy II uses Superdense Time 
[Maler, Manna, Pnuelli, 92]  
for Continuous-Time Signals 

At each tag, the signal has exactly one value. At each time point, the 
signal has a sequence of values. Signals are piecewise continuous, in a 
well-defined technical sense, a property that makes ODE solvers work 
well. 

v : (R⇥N)! R3

v(ti,0) = 0Initial value: 
 
Intermediate value: 
 
Final value: 

v(ti,1) = K

v(ti,n) = 0, n � 2
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Consequences of using Superdense Time 

¢  Transient states are well represented: 

¢  Infinitessimals (even Dirac delta functions): 
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More Consequences: 
Hybrid System 

Finite State Machine 

Dyanmics 1 Dynamics 2 
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Transitions between modes are instantaneous 

In the signals at the right, the velocities 
and accelerations proceed through a 
sequence of values at the times of the 
collisions and separations. 
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Superdense Time 

The red arrows indicate value changes between tags, which correspond 
to discontinuities. Signals are continuous from the left and continuous 
from the right at points of discontinuity. 
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Modal Models and 
Multiform Time 
Once we have a 
clean, instantaneous 
handoff between 
modes, a question 
arises about how to 
model time is a 
dormant mode. 

Actor 

Refinement 

FSM 

State Transition 

Refinement 

Ports 

Ports 

When this mode 
is inactive, 
should time 
advance? 
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The Modal Model Muddle 

It’s about time 
 
After trying several variants on the semantics of modal 
time, we settled on this: 
 
A mode refinement has a local notion of time. When the 
mode refinement is inactive, local time does not advance. 
Local time has a monotonically increasing gap relative to 
environment time. 
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MultiForm Time in Ptolemy II 

suspend resume 

reference time 

local time 
In Ptolemy II Modal Models, 
Time is suspended and resumed 
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Variants for the Semantics of Modal Time that we 
Tried or Considered, but that Failed 

¢  Mode refinement executes while “inactive” but inputs are not 
provided and outputs are not observed. 

¢  Time advances while mode is inactive, and mode refinement 
is responsible for “catching up.” 

¢  Mode refinement is “notified” when it has requested time 
increments that are not met because it is inactive. 

¢  When a mode refinement is re-activated, it resumes from its 
first missed event. 

 

All of these led to some very strange models… 
 

Final solution: Local time does not advance while a mode is 
inactive. Monotonically growing gap between local time and 
environment time. 
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Once we have multiform time, we can build accurate 
models of cyber-physical systems 
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Engineers model physical dynamics using  
differential-algebraic equations. 

The variable t 
represents an 
idealized 
Newtonian 
notion of 
time. 



Lee, Berkeley  22 

But computational platforms have no access to t. 
Instead, local measurements of time are used. 

A superdense 
Newtonian 
notion of time 
becomes 
environment 
time 
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Local time within a hierarchy  
can advance at different rates. 

Model uses “oracle time,” 
which becomes “environment time” 
for the subsystems. 

Model internally uses local time 

Discrete Event MoC 

Model internally uses local time 
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Clocks drift 

¢  Fabrication tolerance 
¢  Aging 
¢  Temperature  
¢  Humidity 
¢  Vibrations  
¢  Quality of the quartz. 
¢  Clock drifts measured in “parts per million” or ppm 

1 ppm corresponds to a deviation of 1µs every second 
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MultiForm Time in Ptolemy 

reference time 

local time 

Heaven for engineers. 
Local time and environment 
time are in sync! 
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Multiform Time in the Real World 

offset reference time 

local time 
Reality: 
There is an offset between 
local time and environment time 
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Multiform Time in Ptolemy 

fast clock 

slow clock 

reference time 

local time 
More real: clocks drift 
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Multiform Time in Ptolemy 

environment time: 
te 
 
start time: 
se, sl 
 
offset: 
o = se - sl 
 
clock rate: 
cl 
 
local time: 
tl = (te - o) × cl 
 
 

t
e

t
l

s
e

s
l

o

cl = 1.0 

cl’ = 0.5 
set clock drift 

Even more real: clock drift changes! 
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Multiform Time in Ptolemy 

environment time: 
te 
 
start time: 
se, sl 
 
offset: 
o = se - sl 
 
clock rate: 
cl 
 
local time: 
tl = (te - o) × cl 
 
 

t
e

t
l

s
e

s
l

o

cl = 1.0 

cl’ = 0.5 
set clock drift 

Ptolemy II provides a 
hierarchy of local clocks 

This can be used, for example, to accurately 
model time synchronization protocols. 
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Multiform Time is Intrinsic! 

Time 

Physical Measured 

Relativistic Newtonian Microprocessor 
Clock 

Synchronized 
Clock 

NTP 
PTP, IEEE 1588 
GPS 

Master Clock TAI 

Time in physical 
laws, 
mathematical, 
continuous 

Time in digital systems 
Circuits, discrete clocks, 
generating well defined 
periodic signals 
 
 

Clock 
synchronization 

Source: Patricia Derler and John Eidson 
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Other Questions about Time: 

1.  Precision 
l  In floating-point formats, 

precision degrades as magnitude increases 

2.  Clear Semantics of Simultaneity 
l  Requires precise addition and subtraction, e.g. 

          (a + b) + c = a + (b + c). 
Floating-point numbers don’t have this property. 

 
Floating point numbers are a poor choice for modeling time! 
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Conclusions 

¢  Modeling time as a simple continuum is not adequate. 
l  Superdense time offers clean semantics for instantaneous 

events. 

¢  Homogeneous time advancing uniformly is not adequate. 
l  Hierarchical multiform time enables accurate and practical 

models of heterogeneous distributed systems. 

¢  Floating point numbers for time are not adequate. 
l  A model with invariant precision and precise addition and 

subtraction is. 


