
Software Engineering Center

Mike Whalen
Program Director
University of Minnesota Software Engineering Center

Sponsored by NSF Research Grant
CNS-1035715

  Rockwell Collins (Darren Cofer, Andrew
Gacek, Steven Miller, Lucas Wagner)

  UPenn: (Insup Lee, Oleg Sokolsky)
  UMN (Mats P. E. Heimdahl)
  CMU SEI (Peter Feiler)

September, 2012 2 LCCC 2012: Mike Whalen

September, 2012 LCCC 2012: Mike Whalen 3

February, 2012 IFIP 2012: Mike Whalen 4

System design & verification through pattern
application and compositional reasoning

COMPUTING
RESOURCE

SENSOR

LRU

FAIL-SILENT
NODE FROM

REPLICAS

COMPUTING
RESOURCE A

COMPUTING
RESOURCE B

VOTE
MULTIPLE

DATA

SENSOR 1

SENSOR 2

SENSOR 3

VERIFIED
AVAILABILITY

VERIFIED
INTEGRITY ARCHITECTURE

MODEL

COMPOSITIONAL PROOF OF CORRECTNESS
(ASSUME – GUARANTEE)

SAFETY, BEHAVIORAL,
PERFORMANCE PROPERTIES

A
B

ST
R

A
C

T
IO

N
 V

E
R

IFIC
A

T
IO

N

R
E

U
SE

COMPOSITION

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

September, 2012 LCCC 2012: Mike Whalen 5

PATTERN &
COMP SPEC

LIBRARY

SYSTEM
MODELING

ENVIRONMENT

INSTANTIATE
ARCHITECTURAL

PATTERNS

SYSTEM
MODEL

AUTO
GENERATE

SYSTEM
IMPLEMENTATION

ARCH
PATTERN
MODELS

COMPONENT
MODELS

ANNOTATE
& VERIFY
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

COMPOSITIONAL
REASONING &

ANALYSIS

Instantiation:
Check structural constraints,
Embed assumptions &
guarantees in system model

Compositional Verification:
System properties are verified
by model checking using
component & pattern
contracts

Reusable Verification:
Proof of component and pattern
requirements (guarantees) and
specification of context
(assumptions)

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

  Avionics system req

requirement

  Relies upon
◦  Accuracy of air data sensors
◦  Control commands from FCS

  Mode of FGS
  FGS control law behavior
  Failover behavior between FGS

systems
  ….

◦  Response of Actuators
◦  Timing/Lag/Latency of

Communications September, 2012 LCCC 2012: Mike Whalen 6

FCS

Avionics
System Under single-fault assumption,

GC output transient response is
bounded in time and magnitude

Autopilot FGS_L FGS_R

ADS_L ADS_R …

…

System
Modes

Control
Laws Co-ord

  Want to prove a transient
response property
◦  The autopilot will not cause a sharp

change in pitch of aircraft.

◦  Even when one FGS fails and the
other assumes control

  Given assumptions about the
environment
◦  The sensed aircraft pitch from the

air data system is within some
absolute bound and doesn’t change
too quickly

◦  The discrepancy in sensed pitch
between left and right side sensors is
bounded.

  and guarantees provided by
components
◦  When a FGS is active, it will generate

an acceptable pitch rate

  As well as facts provided by
pattern application
◦  Leader selection: at least one FGS

will always be active (modulo one
“failover” step)

September, 2012 LCCC 2012: Mike Whalen 7

transient_response_1 : assert true ->
 abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;
transient_response_2 : assert true ->
 abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0))
 < CSA_MAX_PITCH_DELTA_STEP ;

  Avionics system requirement

  Relies upon
◦  Guarantees provided by

patterns and components

◦  Structural properties of
model

◦  Resource allocation feasibility

◦  Probabilistic system-level
failure characteristics

September, 2012 LCCC 2012: Mike Whalen 8

LS

PALS Rep

Platform

synchronous
communication

one node
operational

timing
constraints

not
co-located

Avionics
System

leader transition
bounded

A
SS

U
M

P
T

IO
N

S
G

U
A

R
A

N
T

E
E

S

Under single-fault assumption,
GC output transient response is
bounded in time and magnitude

RT sched
& latency

Error
model

Behavior

Structure

Resource Probabilistic Principled mechanism for
“passing the buck”

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

  Derived from Lustre and
Property Specification
Language (PSL) formalism
◦  IEEE standard

◦  In wide use for hardware
verification

  Assume / Guarantee style
specification
◦  Assumptions: “Under these

conditions”

◦  Promises (Guarantees): “…
the system will do X”

  Local definitions can be
created to simplify
properties

September, 2012 LCCC 2012: Mike Whalen 9

Contract:

fun abs(x: real) : real = if (x > 0) then x else -x ;

const ADS_MAX_PITCH_DELTA: real = 3.0 ;
const FCS_MAX_PITCH_SIDE_DELTA: real = 2.0 ;
…

property AD_L_Pitch_Step_Delta_Valid =
 true ->
 abs(AD_L.pitch.val - prev(AD_L.pitch.val, 0.0)) <
 ADS_MAX_PITCH_DELTA ;

…

active_assumption: assume some_fgs_active ;

transient_assumption :
 assume AD_L_Pitch_Step_Delta_Valid and
 AD_R_Pitch_Step_Delta_Valid and Pitch_lr_ok ;

transient_response_1 :
 assert true -> abs(CSA.CSA_Pitch_Delta) <
 CSA_MAX_PITCH_DELTA ;
transient_response_2 :
 assert true ->
 abs(CSA.CSA_Pitch_Delta –
 prev(CSA.CSA_Pitch_Delta, 0.0)) <
 CSA_MAX_PITCH_DELTA_STEP ;

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

  Notionally: It is always the case that if the
component assumption is true, then the component
will ensure that the guarantee is true.

◦  G(A ⇒ P);

  An assumption violation in the past may prevent
component from satisfying current guarantee, so
we need to assert that the assumptions are true
up to the current step:
◦  G(H(A) ⇒ P) ;

September, 2012 10 LCCC 2012: Mike Whalen

 Given the set of component contracts:
 Γ = { G(H(Ac) ⇒ Pc) | c ∈ C }

 Architecture adds a set of obligations that
tie the system assumption to the
component assumptions

 This process can be repeated for any
number of abstraction levels

September, 2012 11 LCCC 2012: Mike Whalen

  Suppose we have

 Then if for all q ∈ Q
◦  Γ	
 ⇒ G((Z(H(Θq)) ^ Δq) ⇒ q)

 Then:
 G(q) for all q ∈ Q

  [Adapted from McMillan]
September, 2012 12 LCCC 2012: Mike Whalen

  Order of data flow through
system components is
computed by reasoning engine
◦  {System inputs} 

{FGS_L, FGS_R}

◦  {FGS_L, FGS_R}  {AP}

◦  {AP}  {System outputs}

  Based on flow, we establish
four proof obligations
◦  System assumptions 

FGS_L assumptions

◦  System assumptions 
FGS_R assumptions

◦  System assumptions +
FGS_L guarantees +
FGS_R guarantees 
AP assumptions

◦  System assumptions + {FGS_L, FGS_R, AP} guarantees  System guarantees

  System can handle circular flows, but user has to choose where to break cycle
September, 2012 LCCC 2012: Mike Whalen 13

14

AADL

SysML-AADL translation

EDICT:
Architectural

patterns

Lute:
Structural
verification

AGREE:
Compositional behavior

verification

OSATE:
AADL modeling

Enterprise
Architect

Eclipse

KIND

SysML

Lustre

September, 2012 LCCC 2012: Mike Whalen

September, 2012 LCCC 2012: Mike Whalen 15

  Current back-end analysis performed using SMT-based
k-induction model checking technique [Hagen and
Tinelli: FMCAD 2008]

  Very scalable if properties can be inductively proven
  Unfortunately, Inductive proofs often fail because properties

are too weak
  Lots of work on lemma/invariant discovery to strengthen

properties
  Bjesse and Claessen: SAT-based verification without State Space Traversal
  Bradley: SAT-based Model Checking without Unrolling
  Tinelli: Instantiation-Based Invariant Discovery [NFM 2011]

  These strengthening methods are not targeted towards our
problem

  Only supports analysis of linear models

September, 2012 16 LCCC 2012: Mike Whalen

  What do you do when
systems and subcomponents
have hundreds of
requirements?
◦  FGS mode logic: 280

requirements
◦  DWM: >600 requirements

  Need to create automated
slicing techniques for
predicates rather than code.
◦  Perhaps this will be in the form of

counterexample-guided
refinement

  Counterexamples are often
hard to understand for big
models

  It is much worse (in my
experience) for property-
based models

  Given a counterexample,
can you automatically assign
blame to one or more
subcomponents?

  Given a “blamed” component,
can you automatically open
the black box to strengthen
the component guarantee?

Signal Step...
0	
 1	
 2	
 3	
 4	
 5	

AD_L.pitch.val	
 -­‐0.91	
 -­‐1.83	
 -­‐2.74	
 -­‐3.65	
 -­‐4.35	
 -­‐4.39	

AD_L.pitch.valid	
 FALSE	
 TRUE	
 FALSE	
 TRUE	
 TRUE	
 FALSE	

AD_R.pitch.val	
 0.83	
 -­‐0.09	
 -­‐1.00	
 -­‐1.91	
 -­‐2.83	
 -­‐3.74	

AD_R.pitch.valid	
 TRUE	
 FALSE	
 TRUE	
 FALSE	
 FALSE	
 TRUE	

AP.CSA.csa_pitch_delta	
 0.00	
 0.13	
 0.09	
 0.26	
 0.74	
 -­‐4.26	

AP.GC_L.cmds.pitch_delta	
 0.00	
 -­‐4.91	
 -­‐4.65	
 -­‐4.57	
 -­‐4.74	
 -­‐4.35	

AP.GC_L.mds.acGve	
 TRUE	
 FALSE	
 FALSE	
 FALSE	
 FALSE	
 TRUE	

AP.GC_R.cmds.pitch_delta	
 0.00	
 0.83	
 -­‐4.43	
 -­‐4.48	
 4.91	
 4.83	

AP.GC_R.mds.acGve	
 TRUE	
 TRUE	
 FALSE	
 FALSE	
 FALSE	
 FALSE	

AssumpGons	
 for	
 AP	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	

AssumpGons	
 for	
 FCI	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	

AssumpGons	
 for	
 FGS_L	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	

AssumpGons	
 for	
 FGS_R	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	

FGS_L.GC.cmds.pitch_delta	
 -­‐4.91	
 -­‐4.65	
 -­‐4.57	
 -­‐4.74	
 -­‐4.35	
 0.09	

FGS_L.GC.mds.acGve	
 FALSE	
 FALSE	
 FALSE	
 FALSE	
 TRUE	
 FALSE	

FGS_L.LSO.leader	
 2	
 2	
 3	
 2	
 1	
 3	

FGS_L.LSO.valid	
 FALSE	
 TRUE	
 FALSE	
 TRUE	
 TRUE	
 FALSE	

FGS_R.GC.cmds.pitch_delta	
 0.83	
 -­‐4.43	
 -­‐4.48	
 4.91	
 4.83	
 3.91	

FGS_R.GC.mds.acGve	
 TRUE	
 FALSE	
 FALSE	
 FALSE	
 FALSE	
 FALSE	

FGS_R.LSO.leader	
 0	
 0	
 1	
 0	
 1	
 1	

FGS_R.LSO.valid	
 TRUE	
 FALSE	
 TRUE	
 FALSE	
 FALSE	
 TRUE	

leader_pitch_delta	
 0.00	
 0.83	
 0.83	
 0.83	
 0.83	
 -­‐4.35	

System	
 level	
 guarantees	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 TRUE	
 FALSE	

September, 2012 18 LCCC 2012: Mike Whalen

  Disparate kinds of evidence throughout the
system
◦  Probabilistic
◦  Resource
◦  Structural properties of model
◦  Behavioral properties of model

  How do we tie these things together?
  Evidence graph, similar to proof graph in PVS
◦  Shows evidential obligations that have not been

discharged

September, 2012 LCCC 2012: Mike Whalen 19

  Current analysis is synchronous
◦  It assumes all subcomponents run at the same rate
◦  It assumes single-step delay between subcomponents

  This is not how the world works!
◦  …unless you use Time-Triggered Architectures or

PALS

  Adding more realistic support for time is crucial
to accurate analyses
◦  Time intervals tend to diverge in hierarchical verification
◦  E.g. synchronization.

September, 2012 LCCC 2012: Mike Whalen 20

September, 2012 LCCC 2012: Mike Whalen 21

We do not yet have a clear idea of how
to effectively partition system analyses
to perform effective compositional
reasoning across domains

The Collins/UMN META tools are a first step
towards this goal.

We need research to combine
analyses to make overall system
analysis more effective.

  Still early work…
◦  Many AADL constructs left to be mapped
◦  Many timing issues need to be resolved
◦  Better support for proof engineering needs to be

found

  But
◦  Already can do some interesting analysis with tools
◦  Sits in a nice intersection between requirements

engineering and formal methods
◦  Lots of work yet on how best to specify requirements

September, 2012 LCCC 2012: Mike Whalen 22

September, 2012 LCCC 2012: Mike Whalen 23

