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System design & verification through pattern 
application and compositional reasoning 

COMPUTING 
RESOURCE 

SENSOR 

LRU 

FAIL-SILENT 
NODE FROM 

REPLICAS 

COMPUTING 
RESOURCE A 

COMPUTING 
RESOURCE B 

VOTE 
MULTIPLE 

DATA 

SENSOR 1 

SENSOR 2 

SENSOR 3 

VERIFIED 
AVAILABILITY 

VERIFIED 
INTEGRITY ARCHITECTURE 

MODEL 

COMPOSITIONAL PROOF OF CORRECTNESS 
(ASSUME – GUARANTEE) 

SAFETY, BEHAVIORAL, 
PERFORMANCE PROPERTIES 

A
B

ST
R

A
C

T
IO

N
 V

E
R

IFIC
A

T
IO

N
 

R
E

U
SE

 

COMPOSITION 

© Copyright 2011 Rockwell Collins, Inc.  
All rights reserved. 



September, 2012 LCCC 2012:  Mike Whalen 5 

PATTERN & 
COMP SPEC 

LIBRARY 

SYSTEM 
MODELING 

ENVIRONMENT 

INSTANTIATE 
ARCHITECTURAL 

PATTERNS  

SYSTEM 
MODEL 

AUTO 
GENERATE 

SYSTEM 
IMPLEMENTATION 

ARCH 
PATTERN 
MODELS 

COMPONENT 
MODELS 

ANNOTATE  
& VERIFY 
MODELS 

COMPONENT 
LIBRARY 

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY 

COMPOSITIONAL 
REASONING & 

ANALYSIS 

Instantiation: 
Check structural constraints, 
Embed assumptions & 
guarantees in system model 

Compositional Verification:   
System properties are verified 
by model checking using 
component & pattern 
contracts 

Reusable Verification: 
Proof of component and pattern 
requirements (guarantees) and 
specification of context 
(assumptions) 
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  Avionics system req  

requirement 

  Relies upon 
◦  Accuracy of air data sensors 
◦  Control commands from FCS 

  Mode of FGS 
  FGS control law behavior 
  Failover behavior between FGS 

systems 
  ….  

◦  Response of Actuators 
◦  Timing/Lag/Latency of 
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  Want to prove a transient 
response property 
◦  The autopilot will not cause a sharp 

change in pitch of aircraft. 

◦  Even when one FGS fails and the 
other assumes control 

  Given assumptions about the 
environment 
◦  The sensed aircraft pitch from the 

air data system is within some 
absolute bound and doesn’t change 
too quickly 

◦  The discrepancy in sensed pitch 
between left and right side sensors is 
bounded. 

  and guarantees provided by 
components 
◦  When a FGS is active, it will generate 

an acceptable pitch rate 

  As well as facts provided by 
pattern application 
◦  Leader selection: at least one FGS 

will always be active (modulo one 
“failover” step) 
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transient_response_1 : assert true ->  
  abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ; 
transient_response_2 : assert true ->  
  abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0))   
     < CSA_MAX_PITCH_DELTA_STEP ; 



  Avionics system requirement 

  Relies upon 
◦  Guarantees provided by 

patterns and components 

◦  Structural properties of 
model 

◦  Resource allocation feasibility 

◦  Probabilistic system-level 
failure characteristics 
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  Derived from Lustre and 
Property Specification 
Language (PSL) formalism 
◦  IEEE standard  

◦  In wide use for hardware 
verification 

  Assume / Guarantee style 
specification 
◦  Assumptions:  “Under these 

conditions” 

◦  Promises (Guarantees): “…
the system will do X” 

  Local definitions can be 
created to simplify 
properties 
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Contract:  

fun abs(x: real) : real = if (x > 0) then x else -x ;  

const ADS_MAX_PITCH_DELTA: real = 3.0 ; 
const FCS_MAX_PITCH_SIDE_DELTA: real = 2.0 ; 
… 

property AD_L_Pitch_Step_Delta_Valid =  
  true ->  
    abs(AD_L.pitch.val - prev(AD_L.pitch.val, 0.0)) <  
        ADS_MAX_PITCH_DELTA ; 

… 

active_assumption: assume some_fgs_active ; 
     

transient_assumption : 
  assume AD_L_Pitch_Step_Delta_Valid and 
         AD_R_Pitch_Step_Delta_Valid and Pitch_lr_ok ;  

     

transient_response_1 :  
  assert true -> abs(CSA.CSA_Pitch_Delta) <  
                     CSA_MAX_PITCH_DELTA ; 
transient_response_2 :  
  assert true ->  
      abs(CSA.CSA_Pitch_Delta –  
          prev(CSA.CSA_Pitch_Delta, 0.0)) <   
               CSA_MAX_PITCH_DELTA_STEP ; 
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  Notionally:  It is always the case that if the 
component assumption is true, then the component 
will ensure that the guarantee is true. 

◦  G(A ⇒ P);  

  An assumption violation in the past may prevent 
component from satisfying current guarantee, so 
we need to assert that the assumptions are true 
up to the current step: 
◦  G(H(A) ⇒ P) ;  
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 Given the set of component contracts: 
   Γ = { G(H(Ac) ⇒ Pc) | c ∈ C } 

 Architecture adds a set of obligations that 
tie the system assumption to the 
component assumptions 

 This process can be repeated for any 
number of abstraction levels 
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  Suppose we have 

 Then if for all q ∈ Q 
◦  Γ	
  ⇒ G((Z(H(Θq)) ^ Δq) ⇒ q) 

 Then:  
   G(q) for all q ∈ Q 

  [Adapted from McMillan] 
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  Order of data flow through  
system components is  
computed by reasoning engine 
◦  {System inputs}   

{FGS_L, FGS_R} 

◦  {FGS_L, FGS_R}  {AP} 

◦  {AP}  {System outputs}  

  Based on flow, we establish  
four proof obligations 
◦  System assumptions   

FGS_L assumptions 

◦  System assumptions  
FGS_R assumptions 

◦  System assumptions +  
FGS_L guarantees +  
FGS_R guarantees   
AP assumptions 

◦  System assumptions + {FGS_L, FGS_R, AP} guarantees  System guarantees 

  System can handle circular flows, but user has to choose where to break cycle 
September, 2012 LCCC 2012:  Mike Whalen 13 
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  Current back-end analysis performed using SMT-based 
k-induction model checking technique [Hagen and 
Tinelli: FMCAD 2008] 

  Very scalable if properties can be inductively proven 
  Unfortunately, Inductive proofs often fail because properties 

are too weak 
  Lots of work on lemma/invariant discovery to strengthen 

properties 
  Bjesse and Claessen: SAT-based verification without State Space Traversal 
  Bradley: SAT-based Model Checking without Unrolling 
  Tinelli: Instantiation-Based Invariant Discovery [NFM 2011] 

  These strengthening methods are not targeted towards our 
problem 

  Only supports analysis of linear models 
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  What do you do when 
systems and subcomponents 
have hundreds of 
requirements? 
◦  FGS mode logic: 280 

requirements  
◦  DWM: >600 requirements 

  Need to create automated 
slicing techniques for 
predicates rather than code. 
◦  Perhaps this will be in the form of 

counterexample-guided 
refinement 



  Counterexamples are often  
hard to understand for big  
models 

  It is much worse (in my  
experience) for property- 
based models 

  Given a counterexample,  
can you automatically assign  
blame to one or more  
subcomponents? 

  Given a “blamed” component,  
can you automatically open  
the black box to strengthen  
the component guarantee? 

Signal Step... 
0	
   1	
   2	
   3	
   4	
   5	
  

AD_L.pitch.val	
   -­‐0.91	
   -­‐1.83	
   -­‐2.74	
   -­‐3.65	
   -­‐4.35	
   -­‐4.39	
  
AD_L.pitch.valid	
   FALSE	
   TRUE	
   FALSE	
   TRUE	
   TRUE	
   FALSE	
  
AD_R.pitch.val	
   0.83	
   -­‐0.09	
   -­‐1.00	
   -­‐1.91	
   -­‐2.83	
   -­‐3.74	
  
AD_R.pitch.valid	
   TRUE	
   FALSE	
   TRUE	
   FALSE	
   FALSE	
   TRUE	
  
AP.CSA.csa_pitch_delta	
   0.00	
   0.13	
   0.09	
   0.26	
   0.74	
   -­‐4.26	
  
AP.GC_L.cmds.pitch_delta	
   0.00	
   -­‐4.91	
   -­‐4.65	
   -­‐4.57	
   -­‐4.74	
   -­‐4.35	
  
AP.GC_L.mds.acGve	
   TRUE	
   FALSE	
   FALSE	
   FALSE	
   FALSE	
   TRUE	
  
AP.GC_R.cmds.pitch_delta	
   0.00	
   0.83	
   -­‐4.43	
   -­‐4.48	
   4.91	
   4.83	
  
AP.GC_R.mds.acGve	
   TRUE	
   TRUE	
   FALSE	
   FALSE	
   FALSE	
   FALSE	
  
AssumpGons	
  for	
  AP	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
  
AssumpGons	
  for	
  FCI	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
  
AssumpGons	
  for	
  FGS_L	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
  
AssumpGons	
  for	
  FGS_R	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
  
FGS_L.GC.cmds.pitch_delta	
   -­‐4.91	
   -­‐4.65	
   -­‐4.57	
   -­‐4.74	
   -­‐4.35	
   0.09	
  
FGS_L.GC.mds.acGve	
   FALSE	
   FALSE	
   FALSE	
   FALSE	
   TRUE	
   FALSE	
  
FGS_L.LSO.leader	
   2	
   2	
   3	
   2	
   1	
   3	
  
FGS_L.LSO.valid	
   FALSE	
   TRUE	
   FALSE	
   TRUE	
   TRUE	
   FALSE	
  
FGS_R.GC.cmds.pitch_delta	
   0.83	
   -­‐4.43	
   -­‐4.48	
   4.91	
   4.83	
   3.91	
  
FGS_R.GC.mds.acGve	
   TRUE	
   FALSE	
   FALSE	
   FALSE	
   FALSE	
   FALSE	
  
FGS_R.LSO.leader	
   0	
   0	
   1	
   0	
   1	
   1	
  
FGS_R.LSO.valid	
   TRUE	
   FALSE	
   TRUE	
   FALSE	
   FALSE	
   TRUE	
  
leader_pitch_delta	
   0.00	
   0.83	
   0.83	
   0.83	
   0.83	
   -­‐4.35	
  
System	
  level	
  guarantees	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   TRUE	
   FALSE	
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  Disparate kinds of evidence throughout the 
system 
◦  Probabilistic 
◦  Resource 
◦  Structural properties of model 
◦  Behavioral properties of model 

  How do we tie these things together? 
  Evidence graph, similar to proof graph in PVS 
◦  Shows evidential obligations that have not been 

discharged 
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  Current analysis is synchronous 
◦  It assumes all subcomponents run at the same rate  
◦  It assumes single-step delay between subcomponents 

  This is not how the world works! 
◦  …unless you use Time-Triggered Architectures or 

PALS 

  Adding more realistic support for time is crucial 
to accurate analyses 
◦  Time intervals tend to diverge in hierarchical verification 
◦  E.g. synchronization. 
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We do not yet have a clear idea of how 
to effectively partition system analyses 
to perform effective compositional 
reasoning across domains 

The Collins/UMN META tools are a first step 
towards this goal. 

We need research to combine 
analyses to make overall system 
analysis more effective. 



  Still early work… 
◦  Many AADL constructs left to be mapped 
◦  Many timing issues need to be resolved 
◦  Better support for proof engineering needs to be 

found 

  But 
◦  Already can do some interesting analysis with tools 
◦  Sits in a nice intersection between requirements 

engineering and formal methods 
◦  Lots of work yet on how best to specify requirements 
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