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Component Level Formal Analysis Efforts
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Vision

System design & verification through pattern
application and compositional reasoning
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System verification

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY
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Compositional Verification:
System properties are verified
by model checking using
component & pattern
contracts

Instantiation:

Check structural constraints,
Embed assumptions &
guarantees in system model

specification of context
(assumptions)
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Hierarchical reasoning about systems
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* Avionics system req

Avionics
System

= Wl Under single-fault assumption,

GC output transient response is
bounded in time and magnitude

, ADS L §ADS R| FCS
e Relies upon

(@]

Accuracy of air data sensors

o

Control commands from FCS
* Mode of FGS

- FGS control law behavior

FGS_L § FGS_R j Autopilot

- Failover behavior between FGS
systems

System [ Control
Modes Laws

Co-ord

(o]

Response of Actuators
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Timing/Lag/Latency of
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Compositional Reasoning for Active
Standby

ibd [Sys ML Internal Block JFlight_Control _System _Impl [Flight_Control _System ] / CSA
o {7l -
Want to prove a transient L i
Flight_Con P2y ystem_Impl

response property

> The autopilot will not cause a sharp AP - Autopilot_Systern
change in pitch of aircraft. sct scr
o Even when One FGS failS and the FoLL [l FGSLtoFDL FG SLtoAP | I FGSRtAP FGSRtFDR B
other assumes control T f i
M M FGS_L : Flight_Guidance_Systerr 4
Given assumptions about the . i o Fos.R: o cusensy soress | L |
environment g 1 E i
°  The sensed aircraft pitch from the LT i I | rvigors vl
air data system is within some ke LY P
absolute bound and doesn’t change M
too quickly
. . . FCItoFG SL FCItoFGSR
°  The discrepancy in sensed pitch
between left and right side sensors is il
bounded_ THROTLFG o FCl: Flight_Crew_Interface e THROTR2FCI
and guarantees provided by
components
> When a FGS is active, it will generate Jﬁ Jﬁ
an acceptable pitch rate ToTL vores R TR

As well as facts provided by

pattern application transient response_ 1 : assert true ->

abs (CSA.CSA_Pitch Delta) < CSA MAX PITCH DELTA ;

> Leader selection: at least one FGS transient response 2 : assert true ->
will always be active (modulo one abs (CSA.CSA_Pitch Delta - prev(CSA.CSA Pitch Delta, 0.0))
“failover” step) < CSA MAX PITCH DELTA STEP ;




Contracts between patterns and
components

e Avionics system requirement

Avionics

System

:’/ Behavior leader transition \‘:
! bounded
° i |
Relies upon i synchronous one node

communication operational

> Guarantees provided by
patterns and components

o Structural propertiesof [l Dm0

model | Structure
timing

> Resource allocation feasibility | constraints

GUARANTEES =

not
co-located

> Probabilistic system-level
failure characteristics Platform

Principled mechanism for | Resource X Probabilistic
“passing the buck” i RT sched ||  Error |
) &latency | model )
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Contracts

Derived from Lustre and
Property Specification
Language (PSL) formalism
> |EEE standard

° |n wide use for hardware
verification

e Assume / Guarantee style

specification

> Assumptions: “Under these
conditions”

> Promises (Guarantees):“...
the system will do X”

Local definitions can be
created to simplify
properties

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Contract:

fun abs(x: real) : real = 1if (x > 0) then x else -x ;
const ADS MAX PITCH DELTA: real = 3.0 ;
const FCS MAX PITCH SIDE DELTA: real = 2.0 ;

property AD L Pitch Step Delta Valid =
true ->
abs (AD L.pitch.val - prev(AD L.pitch.val, 0.0)) <
ADS MAX PITCH DELTA ;

active assumption: assume some fgs active ;

transient assumption :
assume AD L Pitch Step Delta Valid and
AD R Pitch Step Delta Valid and Pitch 1lr ok ;

transient response 1 :
assert true -> abs(CSA.CSA Pitch Delta) <
CSA MAX PITCH DELTA ;
transient response 2 :
assert true ->
abs (CSA.CSA Pitch Delta -
prev (CSA.CSA Pitch Delta, 0.0)) <
CSA MAX PITCH DELTA STEP ;




Reasoning about contracts

* Notionally: It is always the case that if the
component assumption is true, then the component
will ensure that the guarantee is true.

e An assumption violation in the past may prevent
component from satisfying current guarantee, so
we need to assert that the assumptions are true
up to the current step:

> G(H(A) = P);



Reasoning about Contracts

* Given the set of component contracts:
F={G(HA)=P)|cEC}

* Architecture adds a set of obligations that
tie the system assumption to the
component assumptions

Q={H(A,) = P,}U
{H(A;) = A. | ceC}

e This process can be repeated for any
number of abstraction levels



Composition Formulation

* Suppose we have

o Sets of formulas I' and @)
o A well-founded order < on ()
o Sets ©, C A, C Q, such that r € ©, implies r < q

» Thenifforallg € Q
* = G((Z(H(©,)) * A)) = q)
e Then:
G(q) forallqg € Q

* [Adapted from McMillan]



A concrete example

e Order of data flow through
system components is
computed by reasoning engine

o {System inputs} =
{FGS_L,FGS_R}
o {FGS_L,FGS R} - {AP}
> {AP} = {System outputs}
e Based on flow, we establish
four proof obligations

o System assumptions =
FGS_L assumptions

o System assumptions =
FGS_R assumptions

o System assumptions +
FGS_L guarantees +

FGS_R guarantees 2>
AP assumptions

ibd [Sys ML Internal Block JFlight_Control _System_Impl [Flight_Control _System]

— " —

Flight_Confx

ystem_Impl

Flight_Control_Sy sten
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AP : Autopilot_System

GC_L GC_R

ADLtoFGSL

B} P
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NAV_L | =
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YOKEL2FCI

FGS_L : Flight_Guidance_System

FGSRtoFDR

FGSLtoAP J l FGSRwAP
FGSLFGSR
H———————={ s
FGSRIFGSL
J<————"—{ 0
FCIOFGSL FCIFGSR
FCI’_J
L
{1}

THROT_L

YOKE_L

FCI : Flight_Crew_Interface

FGS_R : Flight_Guidance_System

THROTR2FCI

ADRtoFG SR

THROT_R <

YOKE_R

YOKER2FCI

Jw J-\
) ) ) )
THROT_L YOKE_L YOKE_R THROT_R

o System assumptions + {FGS_L, FGS_R,AP} guarantees = System guarantees

e System can handle circular flows, but user has to choose where to break cycle



Tool Chain
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-- specification (( G leader_select & G _L_sync_out.device_ok | FGS_R_sync |
out .device_ok)) -> G !(ap_choice = -1)) IN My_FCS i

-- specification (( G leader_select & G (FGS_L_sync_out.device_ok | FGS_R_sync_|
out .device_ok)) -> G ap_choice_state_ok) IN My_FCS is

-- specification (((((( G (FGS_L_valid_state & input_de

ta_L_ok.ret) & ( G (FGS_R_valid_state & input_delta_ok

.ret)) & G leader_select) & G (FGS_L_sync_out.device_

e_ok)) & G ap_choice_state_ok) -> G ap_choice_output_

sun_metaII\UMN\SMU Examples\Patterns>_




Research Challenges

FAILURE SUCCESS




Proving

e Current back-end analysis performed using SMT-based

k-induction model checking technique [Hagen and
Tinelli: FMCAD 2008]

* Very scalable if properties can be inductively proven

* Unfortunately, Inductive proofs often fail because properties
are too weak

e Lots of work on lemma/invariant discovery to strengthen
properties
Bjesse and Claessen: SAT-based verification without State Space Traversal

Bradley: SAl-based Model Checking without Unrolling
Tinelli: Instantiation-Based Invariant Discovery [NFM 201 1]

* These strengthening methods are not targeted towards our
problem

e Only supports analysis of linear models



Scaling

* What do you do when
systems and subcomponents
have hundreds of
requirements?

> FGS mode logic: 280
requirements

> DWM: >600 requirements

* Need to create automated
slicing techniques for
predicates rather than code.

> Perhaps this will be in the form of

counterexample-guided
refinement

o

B, (B 4 == = |

CEVYH B

SMY Proof

SPEC AG((IMode_Annunciations_On & |0Onside_FD_On) -=»
AX((ls_This_Side_Active =1 & Onside_FD_On) -»
Mode_Annunciations_On))

SPEC AG((IMode_Annunciations_On & Offside_FD_On = FALSE) ->
AX({ls_This_Side_Active = 1 & Offside_FD_On = TRUE) ->
Mode_Annunciations_On))

SPEC AG((IMode_Annunciations_On & 0Onside_FD_On) -=>
AX((Is_This_Side_Active = 1 & Onside_FD_On) -=
Mode_Annunciations_On))

SPEC AG(Mode_Annunciations_On -> AX((Is_This_Side_Active=1 &
IOnside_FD_On & Offside_FD_On = FALSE & lls_AP_Engaged) -»
IMode_Annunciations_On))

SPEC AG(Mode_Annunciations_On -> AX((Is_This_Side_Active=1 &
{Onside_FD_On | Offside_FD_On = TRUE | Is_AP_Engaged)) ->
Mode_Annunciations_On))

SPEC (IMode_Annunciations_On)
SPEC AG(ls_This_Side_Active = 1 -» (Mode_Annunciations_On <->
{Onside_FD_On | Offside_FD_On = TRUE | Is_AP_Engaged)))




Assigning blame

Counterexamples are often
hard to understand for big
models

It is much worse (in my
experience) for property-
based models

Given a counterexample,
can you automatically assign
blame to one or more
subcomponents?

Given a “blamed” component,
can you automatically open
the black box to strengthen
the component guarantee!

Signal Step...

0 1 2 3 4 5
AD_L.pitch.val -091 -1.83 -2.74 -3.65 -435 -4.39
AD_L.pitch.valid FALSE TRUE FALSE TRUE TRUE FALSE
AD_R.pitch.val 0.83 -0.09 -100 -191 -2.83 -3.74
AD_R.pitch.valid TRUE FALSE TRUE FALSE FALSE TRUE
AP.CSA.csa_pitch_delta 000 0.13 0.09 026 0.74 -4.26
AP.GC_L.cmds.pitch_delta 0.00 -491 -4.65 -4.57 -4.74 -4.35
AP.GC_L.mds.active TRUE FALSE FALSE FALSE FALSE TRUE
AP.GC_R.cmds.pitch_delta 0.00 0.83 -4.43 -4.48 491 4383
AP.GC_R.mds.active TRUE TRUE FALSE FALSE FALSE FALSE
Assumptions for AP TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FCI TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_L TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_R TRUE TRUE TRUE TRUE TRUE TRUE
FGS_L.GC.cmds.pitch_delta -491 -465 -457 -4.74 -4.35 0.09
FGS_L.GC.mds.active FALSE FALSE FALSE FALSE TRUE FALSE
FGS_L.LSO.leader 2 2 3 2 1 3
FGS_L.LSO.valid FALSE TRUE FALSE TRUE TRUE FALSE
FGS_R.GC.cmds.pitch_delta 0.83 -4.43 -448 491 4.83 3.91
FGS_R.GC.mds.active TRUE FALSE FALSE FALSE FALSE FALSE
FGS_R.LSO.leader 0 0 1 0 1 1
FGS_R.LSO.valid TRUE FALSE TRUE FALSE FALSE TRUE
leader_pitch_delta 000 083 083 083 0.83 -4.35
System level guarantees TRUE TRUE TRUE TRUE TRUE FALSE



“Argument Engineering”

» Disparate kinds of evidence throughout the
system
Probabilistic

o

(0]

Resource

(0]

Structural properties of model

o

Behavioral properties of model
* How do we tie these things together?
* Evidence graph, similar to proof graph in PVS

> Shows evidential obligations that have not been
discharged



Dealing with Time

e Current analysis is synchronous

° It assumes all subcomponents run at the same rate

° It assumes single-step delay between subcomponents

e This is not how the world works!

° ...unless you use Time-Triggered Architectures or
PALS
* Adding more realistic support for time is crucial
to accurate analyses

> Time intervals tend to diverge in hierarchical verification

> E.g. synchronization.



Provocations

We do not yet have a clear idea of how
to effectively partition system analyses
to perform effective compositional
reasoning across domains

We need research to combine
analyses to make overall system
analysis more effective.

The Collins/UMN META tools are a first step
towards this goal.




Conclusions

o Still early work...
> Many AADL constructs left to be mapped
> Many timing issues need to be resolved

> Better support for proof engineering needs to be
found

e But

> Already can do some interesting analysis with tools

o Sits in a nice intersection between requirements
engineering and formal methods

° Lots of work yet on how best to specify requirements



Thank you!

 GEgepore> 5 ewei HE
% Gracias

xxxxx
{ <
%s@kkﬁrﬂer %

< < <<




