Compositional Analysis of System
Architectures (using Lustre)

Mike Whalen

Program Director
University of Minnesota Software Engineering Center

UNIVERSITY OF MINNESOTA

Software Engineering Center Sponsored by NSF Research Grant
CNS-1035715

Acknowledgements

* Rockwell Collins (Darren Cofer, Andrew
Gacek, Steven Miller, Lucas Wagner)

e UPenn: (Insup Lee, Oleg Sokolsky)
e UMN (Mats P. E. Heimdahl)
o CMU SEI (Peter Feiler)

Component Level Formal Analysis Efforts

Rockw i
oc, (o%”s Examples of Using Formal Methods

Rockwey/. Examples of Using Formal Methods ~-- oo Cliol i N
Collins I o
Examples of Formal Methods
Rockw i
L/ High Speed Encryptor
Rockwel/ Examples of Formal Methods
Rockwe/. Examples of Using Formal Methods
ollins CerTA FCS Phase 11
Turnstile High Integrity Guard e AFRL - Wright Patterson VA Directorate
' § 8 A

High-assurance cross domain platform that provides secure
communication between different security classification
domains ranging from top secret to unclassified.

Accreditable {

RorMeIL
Collins

Core guard application is based

on the NSA certified AAMP7G. Top

SECRET

I/0 processing is relegated to Offload
Engines (OE) that do not have to be as
highly trusted.

System integrator can add function to the
OE without compromising the guard
function.

Certification based on ACL2 theorem prover

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Formal Analysis
of a Triplex Sensor Voter
in an Industrial Context

Michael Dierkes
Rockwell Collins France

FMICS 2011 workshop
August 30, 2011
Trento
Rockwe//_
Collins

Copyright Rockwell Collins 2011
Allrights reserved

CCCT T ZUTZT T'IKe vvnaren)

EPLEMDET, ZUTZ

Vision

System design & verification through pattern
application and compositional reasoning

;' LRU >
1 [vs)
| SENSOR | —> ! ' 17
| 1 | COMPUTING i FAILSSILENT -
VOTE : || | RESOURCEA | NODE FROM bl
MULTIPLE SENSOR2 > i —> REPLICAS >
DATA 1 | : : 0
! N COMPUTING : =
1! -
SENSOR3 ——> I | RESOURCEB ! 0
1 [D 4 4
\ 1
___________________ . <
m
| | 2
| | r’g =
VERIFIED ! ! VERIFIED co
AVAILABILITY ARCHITECTURE INTEGRITY »n >
MODEL m =
o)
COMPOSITIONAL PROOF OF CORRECTNESS Z

(ASSUME — GUARANTEE)

SAFETY, BEHAVIORAL,
PERFORMANCE PROPERTIES

COMPOSITION

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

System verification

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

i |

S - - - ——————— e m—— == P o o e e e e e e e e e e e e e e e e e e e -

> INSTANTIATE
ARCHITECTURAL
PATTERNS

 ARCH
PATTERN
MODELS

SYSTEM SYSTEM

MODELING ———>>» MODEL

ENVIRONMENT

PATTERN &
COMP SPEC
LIBRARY

& VERIFY
MODELS

A

COMPONENT]

LIBRARY

Reusable Verification:
Proof of component and pattern
requirements (guarantees) and

COMPOSITIONA
REASONING &

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

:

1

SYSTEM !
AUTO '
> GENERATE —>{IMPLEMENTATION |
1

1

1

1

1

1

1

1

1

1

1

1

1

1

:

1

ANALYSIS :
1
1
1

i
i
i
!
i
1
i
i
i
i
i
i
i
i
I
i
i
i
i
|
i
: ANNOTATE
i
i
I
i
i
1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
I
i
i
i
i
i

Compositional Verification:
System properties are verified
by model checking using
component & pattern
contracts

Instantiation:

Check structural constraints,
Embed assumptions &
guarantees in system model

specification of context
(assumptions)

© Coyright 2011 Rockwell Collins, Inc. September, 2012 LCCC 2012: Mike Whalen 5
rights reserved.

Hierarchical reasoning about systems

i |

* Avionics system req

Avionics
System

= Wl Under single-fault assumption,

GC output transient response is
bounded in time and magnitude

, ADS L §ADS R| FCS
e Relies upon

(@]

Accuracy of air data sensors

o

Control commands from FCS
* Mode of FGS

- FGS control law behavior

FGS_L § FGS_R j Autopilot

- Failover behavior between FGS
systems

System [Control
Modes Laws

Co-ord

(o]

Response of Actuators

(¢]

Timing/Lag/Latency of

Communications September, 2012 LCCC 2012: Mike Whalen 6

Compositional Reasoning for Active
Standby

ibd [Sys ML Internal Block JFlight_Control _System _Impl [Flight_Control _System] / CSA
o {7l -
Want to prove a transient L i
Flight_Con P2y ystem_Impl

response property

> The autopilot will not cause a sharp AP - Autopilot_Systern
change in pitch of aircraft. sct scr
o Even when One FGS failS and the FoLL [l FGSLtoFDL FG SLtoAP | I FGSRtAP FGSRtFDR B
other assumes control T f i
M M FGS_L : Flight_Guidance_Systerr 4
Given assumptions about the . i o Fos.R: o cusensy soress | L |
environment g 1 E i
° The sensed aircraft pitch from the LT i I | rvigors vl
air data system is within some ke LY P
absolute bound and doesn’t change M
too quickly
. . . FCItoFG SL FCItoFGSR
° The discrepancy in sensed pitch
between left and right side sensors is il
bounded_ THROTLFG o FCl: Flight_Crew_Interface e THROTR2FCI
and guarantees provided by
components
> When a FGS is active, it will generate Jﬁ Jﬁ
an acceptable pitch rate ToTL vores R TR

As well as facts provided by

pattern application transient response_ 1 : assert true ->

abs (CSA.CSA_Pitch Delta) < CSA MAX PITCH DELTA ;

> Leader selection: at least one FGS transient response 2 : assert true ->
will always be active (modulo one abs (CSA.CSA_Pitch Delta - prev(CSA.CSA Pitch Delta, 0.0))
“failover” step) < CSA MAX PITCH DELTA STEP ;

Contracts between patterns and
components

e Avionics system requirement

Avionics

System

:’/ Behavior leader transition \‘:
! bounded
° i |
Relies upon i synchronous one node

communication operational

> Guarantees provided by
patterns and components

o Structural propertiesof [l Dm0

model | Structure
timing

> Resource allocation feasibility | constraints

GUARANTEES =

not
co-located

> Probabilistic system-level
failure characteristics Platform

Principled mechanism for | Resource X Probabilistic
“passing the buck” i RT sched || Error |
) &latency | model)
© Copyright 2011 Rockwell Collins, Inc. September,2012 LCCC 2012: Mike Whalen 8

All rights reserved.

Contracts

Derived from Lustre and
Property Specification
Language (PSL) formalism
> |EEE standard

° |n wide use for hardware
verification

e Assume / Guarantee style

specification

> Assumptions: “Under these
conditions”

> Promises (Guarantees):“...
the system will do X”

Local definitions can be
created to simplify
properties

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Contract:

fun abs(x: real) : real = 1if (x > 0) then x else -x ;
const ADS MAX PITCH DELTA: real = 3.0 ;
const FCS MAX PITCH SIDE DELTA: real = 2.0 ;

property AD L Pitch Step Delta Valid =
true ->
abs (AD L.pitch.val - prev(AD L.pitch.val, 0.0)) <
ADS MAX PITCH DELTA ;

active assumption: assume some fgs active ;

transient assumption :
assume AD L Pitch Step Delta Valid and
AD R Pitch Step Delta Valid and Pitch 1lr ok ;

transient response 1 :
assert true -> abs(CSA.CSA Pitch Delta) <
CSA MAX PITCH DELTA ;
transient response 2 :
assert true ->
abs (CSA.CSA Pitch Delta -
prev (CSA.CSA Pitch Delta, 0.0)) <
CSA MAX PITCH DELTA STEP ;

Reasoning about contracts

* Notionally: It is always the case that if the
component assumption is true, then the component
will ensure that the guarantee is true.

e An assumption violation in the past may prevent
component from satisfying current guarantee, so
we need to assert that the assumptions are true
up to the current step:

> G(H(A) = P);

Reasoning about Contracts

* Given the set of component contracts:
F={G(HA)=P)|cEC}

* Architecture adds a set of obligations that
tie the system assumption to the
component assumptions

Q={H(A,) = P,}U
{H(A;) = A. | ceC}

e This process can be repeated for any
number of abstraction levels

Composition Formulation

* Suppose we have

o Sets of formulas I' and @)
o A well-founded order < on ()
o Sets ©, C A, C Q, such that r € ©, implies r < q

» Thenifforallg € Q
* = G((Z(H(©,)) * A)) = q)
e Then:
G(q) forallqg € Q

* [Adapted from McMillan]

A concrete example

e Order of data flow through
system components is
computed by reasoning engine

o {System inputs} =
{FGS_L,FGS_R}
o {FGS_L,FGS R} - {AP}
> {AP} = {System outputs}
e Based on flow, we establish
four proof obligations

o System assumptions =
FGS_L assumptions

o System assumptions =
FGS_R assumptions

o System assumptions +
FGS_L guarantees +

FGS_R guarantees 2>
AP assumptions

ibd [Sys ML Internal Block JFlight_Control _System_Impl [Flight_Control _System]

— " —

Flight_Confx

ystem_Impl

Flight_Control_Sy sten

FGSLtoFDL

AP : Autopilot_System

GC_L GC_R

ADLtoFGSL

B} P

NAVLtoFG SL
NAV_L | =

THROTL2FCI

YOKEL2FCI

FGS_L : Flight_Guidance_System

FGSRtoFDR

FGSLtoAP J l FGSRwAP
FGSLFGSR
H———————={ s
FGSRIFGSL
J<————"—{ 0
FCIOFGSL FCIFGSR
FCI’_J
L
{1}

THROT_L

YOKE_L

FCI : Flight_Crew_Interface

FGS_R : Flight_Guidance_System

THROTR2FCI

ADRtoFG SR

THROT_R <

YOKE_R

YOKER2FCI

Jw J-\
))))
THROT_L YOKE_L YOKE_R THROT_R

o System assumptions + {FGS_L, FGS_R,AP} guarantees = System guarantees

e System can handle circular flows, but user has to choose where to break cycle

Tool Chain

Me tan Vew Pops Dugom tne

Ve ~
 Conposte ENENa ¥
) o

SysML-AADL translation 18 -p=—te A

OSATE' CHCTE]
AADL modeling e R AR J

Design Effort: META demo.
Design Option: META demo.

‘System Composition

EDICT:

= Architectural =)
[SE— PR —
< patterns e

= ’ |- B e A

AADL Lute:

Structural
verification

| \docs\sun_metalI\UMN\SHMU Examples\Patterns>nusmu Final_system_3.smu

SETES|
Bk B mach ipet Bomd Gew Famsl Cobim Mo Suplng &heced Wnion 1 sl
as EEEIEIEIHEIR) =) <[5 % o >

% oo 160 | Mmoo i s |

cetumms four

)
+ inc)

Cout = 5 (sn >) then in else —in ;

Thi.

is NuSMU 2.5.2 (compiled on Fri Oct 29 11:40:52 UTC 2010)

Enabled addons are:

compass
For more information on NuSHMU see <http://nusi

u. fbk . eu>

or email to <nusmu-users@list.fbk.eu>.

Please report bugs to <nusmu-users@fbk.eu>

Copyright (c) 2010, Fondazione Bruno Kessler

Compositional behavior
verification

This version of NuSMU is linked to the CUDD library version 2.4.1
Copyright (c) 1995-2004, Regents of the University of Colorado

This version of NuSHU linked to the MiniSat SAT soluer
See http://uuww.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
Copyright (c¢) 2003-2005, Niklas Een, Niklas Sorensson

FLene o5

Lustre

e 20 T040a8 A_Fl 273T

-- specification ((G leader_select & G _L_sync_out.device_ok | FGS_R_sync |
out .device_ok)) -> G !(ap_choice = -1)) IN My_FCS i

-- specification ((G leader_select & G (FGS_L_sync_out.device_ok | FGS_R_sync_|
out .device_ok)) -> G ap_choice_state_ok) IN My_FCS is

-- specification ((((((G (FGS_L_valid_state & input_de

ta_L_ok.ret) & (G (FGS_R_valid_state & input_delta_ok

.ret)) & G leader_select) & G (FGS_L_sync_out.device_

e_ok)) & G ap_choice_state_ok) -> G ap_choice_output_

sun_metaII\UMN\SMU Examples\Patterns>_

Research Challenges

FAILURE SUCCESS

Proving

e Current back-end analysis performed using SMT-based

k-induction model checking technique [Hagen and
Tinelli: FMCAD 2008]

* Very scalable if properties can be inductively proven

* Unfortunately, Inductive proofs often fail because properties
are too weak

e Lots of work on lemma/invariant discovery to strengthen
properties
Bjesse and Claessen: SAT-based verification without State Space Traversal

Bradley: SAl-based Model Checking without Unrolling
Tinelli: Instantiation-Based Invariant Discovery [NFM 201 1]

* These strengthening methods are not targeted towards our
problem

e Only supports analysis of linear models

Scaling

* What do you do when
systems and subcomponents
have hundreds of
requirements?

> FGS mode logic: 280
requirements

> DWM: >600 requirements

* Need to create automated
slicing techniques for
predicates rather than code.

> Perhaps this will be in the form of

counterexample-guided
refinement

o

B, (B 4 == = |

CEVYH B

SMY Proof

SPEC AG((IMode_Annunciations_On & |0Onside_FD_On) -=»
AX((ls_This_Side_Active =1 & Onside_FD_On) -»
Mode_Annunciations_On))

SPEC AG((IMode_Annunciations_On & Offside_FD_On = FALSE) ->
AX({ls_This_Side_Active = 1 & Offside_FD_On = TRUE) ->
Mode_Annunciations_On))

SPEC AG((IMode_Annunciations_On & 0Onside_FD_On) -=>
AX((Is_This_Side_Active = 1 & Onside_FD_On) -=
Mode_Annunciations_On))

SPEC AG(Mode_Annunciations_On -> AX((Is_This_Side_Active=1 &
IOnside_FD_On & Offside_FD_On = FALSE & lls_AP_Engaged) -»
IMode_Annunciations_On))

SPEC AG(Mode_Annunciations_On -> AX((Is_This_Side_Active=1 &
{Onside_FD_On | Offside_FD_On = TRUE | Is_AP_Engaged)) ->
Mode_Annunciations_On))

SPEC (IMode_Annunciations_On)
SPEC AG(ls_This_Side_Active = 1 -» (Mode_Annunciations_On <->
{Onside_FD_On | Offside_FD_On = TRUE | Is_AP_Engaged)))

Assigning blame

Counterexamples are often
hard to understand for big
models

It is much worse (in my
experience) for property-
based models

Given a counterexample,
can you automatically assign
blame to one or more
subcomponents?

Given a “blamed” component,
can you automatically open
the black box to strengthen
the component guarantee!

Signal Step...

0 1 2 3 4 5
AD_L.pitch.val -091 -1.83 -2.74 -3.65 -435 -4.39
AD_L.pitch.valid FALSE TRUE FALSE TRUE TRUE FALSE
AD_R.pitch.val 0.83 -0.09 -100 -191 -2.83 -3.74
AD_R.pitch.valid TRUE FALSE TRUE FALSE FALSE TRUE
AP.CSA.csa_pitch_delta 000 0.13 0.09 026 0.74 -4.26
AP.GC_L.cmds.pitch_delta 0.00 -491 -4.65 -4.57 -4.74 -4.35
AP.GC_L.mds.active TRUE FALSE FALSE FALSE FALSE TRUE
AP.GC_R.cmds.pitch_delta 0.00 0.83 -4.43 -4.48 491 4383
AP.GC_R.mds.active TRUE TRUE FALSE FALSE FALSE FALSE
Assumptions for AP TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FCI TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_L TRUE TRUE TRUE TRUE TRUE TRUE
Assumptions for FGS_R TRUE TRUE TRUE TRUE TRUE TRUE
FGS_L.GC.cmds.pitch_delta -491 -465 -457 -4.74 -4.35 0.09
FGS_L.GC.mds.active FALSE FALSE FALSE FALSE TRUE FALSE
FGS_L.LSO.leader 2 2 3 2 1 3
FGS_L.LSO.valid FALSE TRUE FALSE TRUE TRUE FALSE
FGS_R.GC.cmds.pitch_delta 0.83 -4.43 -448 491 4.83 3.91
FGS_R.GC.mds.active TRUE FALSE FALSE FALSE FALSE FALSE
FGS_R.LSO.leader 0 0 1 0 1 1
FGS_R.LSO.valid TRUE FALSE TRUE FALSE FALSE TRUE
leader_pitch_delta 000 083 083 083 0.83 -4.35
System level guarantees TRUE TRUE TRUE TRUE TRUE FALSE

“Argument Engineering”

» Disparate kinds of evidence throughout the
system
Probabilistic

o

(0]

Resource

(0]

Structural properties of model

o

Behavioral properties of model
* How do we tie these things together?
* Evidence graph, similar to proof graph in PVS

> Shows evidential obligations that have not been
discharged

Dealing with Time

e Current analysis is synchronous

° It assumes all subcomponents run at the same rate

° It assumes single-step delay between subcomponents

e This is not how the world works!

° ...unless you use Time-Triggered Architectures or
PALS
* Adding more realistic support for time is crucial
to accurate analyses

> Time intervals tend to diverge in hierarchical verification

> E.g. synchronization.

Provocations

We do not yet have a clear idea of how
to effectively partition system analyses
to perform effective compositional
reasoning across domains

We need research to combine
analyses to make overall system
analysis more effective.

The Collins/UMN META tools are a first step
towards this goal.

Conclusions

o Still early work...
> Many AADL constructs left to be mapped
> Many timing issues need to be resolved

> Better support for proof engineering needs to be
found

e But

> Already can do some interesting analysis with tools

o Sits in a nice intersection between requirements
engineering and formal methods

° Lots of work yet on how best to specify requirements

Thank you!

 GEgepore> 5 ewei HE
% Gracias

xxxxx
{ <
%s@kkﬁrﬂer %

< < <<

